{"title":"Perfectly Matched Layer for Cole–Cole Dispersive Media in DGTD Method","authors":"Xuebin Qin;Xuan Wu;Shuo Wang;Xiaoying Zhao;Yuanguo Zhou;Qiang Ren","doi":"10.1109/JMMCT.2024.3462529","DOIUrl":null,"url":null,"abstract":"Simulating electromagnetic waves within biological tissues is critical for assessing electromagnetic effects in biological environment. Precise modeling of biological tissues in computational electromagnetics is therefore necessary. The Cole-Cole dispersive model based on the fractional power functions can more accurately describe the electrical characteristics of biological tissues in a wide frequency range than the typical dispersive model based on the integer power functions. Previous research on the time-domain simulation of the Cole-Cole medium is mainly based on the finite difference time domain (FDTD) method. Recently, researchers proposed a DEH scheme (Maxwell's equations with field variables D, E and H) discontinuous Galerkin time domain (DGTD) method to simulate wave propagation in the Cole-Cole dispersive media. However, it lacks the perfectly matched layer (PML) to truncate the Cole-Cole background media. This paper fills this gap by developing a PML for Cole-Cole background media in the DGTD method.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10681534/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Simulating electromagnetic waves within biological tissues is critical for assessing electromagnetic effects in biological environment. Precise modeling of biological tissues in computational electromagnetics is therefore necessary. The Cole-Cole dispersive model based on the fractional power functions can more accurately describe the electrical characteristics of biological tissues in a wide frequency range than the typical dispersive model based on the integer power functions. Previous research on the time-domain simulation of the Cole-Cole medium is mainly based on the finite difference time domain (FDTD) method. Recently, researchers proposed a DEH scheme (Maxwell's equations with field variables D, E and H) discontinuous Galerkin time domain (DGTD) method to simulate wave propagation in the Cole-Cole dispersive media. However, it lacks the perfectly matched layer (PML) to truncate the Cole-Cole background media. This paper fills this gap by developing a PML for Cole-Cole background media in the DGTD method.