{"title":"The Fluctuation Effect of Remnant Polarization in Hf₀.₅Zr₀.₅O₂ Capacitors at Elevated Temperatures","authors":"Zhaomeng Gao;Yunzhe Zheng;Tianjiao Xin;Cheng Liu;Qiwendong Zhao;Yilin Xu;Yonghui Zheng;Xiaoling Lin;Hangbing Lyu;Yan Cheng","doi":"10.1109/LED.2024.3443619","DOIUrl":null,"url":null,"abstract":"Studying the ferroelectric (FE) polarization behavior and failure mechanism of hafnia-based FE devices at varying temperatures is essential for enhancing the reliability of FE memory under real-working conditions. In this study, we investigated the remnant polarization (Pr) fluctuation during electrical cycling in Hf\n<inline-formula> <tex-math>$_{{0}.{5}}$ </tex-math></inline-formula>\nZr\n<inline-formula> <tex-math>$_{{0}.{5}}$ </tex-math></inline-formula>\nO\n<sub>2</sub>\n (HZO) capacitors at elevated temperatures. The decrease in Pr can be attributed to the formation and thickening of the tetragonal (T-) phase interface layer, which reduces the electric field applied to the orthorhombic (O-) phase layer. The subsequent increase in Pr is caused by oxygen defects and leakage current in the T-phase interface layer, raising the electric field applied to the O-FE layer. Therefore, fluctuations in the electric field applied to the O-FE layer are considered as the primary cause for Pr fluctuation. Our direct characterization of T-layers, defects, and electrical properties offers insights into assessing FE phase stability and oxygen defect evolution in fluorite-type FE materials, guiding strategies to enhance device reliability.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 10","pages":"1788-1791"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10636321/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Studying the ferroelectric (FE) polarization behavior and failure mechanism of hafnia-based FE devices at varying temperatures is essential for enhancing the reliability of FE memory under real-working conditions. In this study, we investigated the remnant polarization (Pr) fluctuation during electrical cycling in Hf
$_{{0}.{5}}$
Zr
$_{{0}.{5}}$
O
2
(HZO) capacitors at elevated temperatures. The decrease in Pr can be attributed to the formation and thickening of the tetragonal (T-) phase interface layer, which reduces the electric field applied to the orthorhombic (O-) phase layer. The subsequent increase in Pr is caused by oxygen defects and leakage current in the T-phase interface layer, raising the electric field applied to the O-FE layer. Therefore, fluctuations in the electric field applied to the O-FE layer are considered as the primary cause for Pr fluctuation. Our direct characterization of T-layers, defects, and electrical properties offers insights into assessing FE phase stability and oxygen defect evolution in fluorite-type FE materials, guiding strategies to enhance device reliability.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.