A-064 Improved Insulin production in Advanced glycation end-products (AGEs)-induced RIN-m5F pancreatic β-cells by using a Flavonoid-Rich Medicinal Plant, Kaempferia parviflora treatment
{"title":"A-064 Improved Insulin production in Advanced glycation end-products (AGEs)-induced RIN-m5F pancreatic β-cells by using a Flavonoid-Rich Medicinal Plant, Kaempferia parviflora treatment","authors":"K Chumroonsiri, A Chiabchalard","doi":"10.1093/clinchem/hvae106.063","DOIUrl":null,"url":null,"abstract":"Background Advanced glycation end-products (AGEs) are glycated proteins that react with reducing sugar which causes the damages of function and cellular signaling of insulin production in insulinoma cells. AGEs also contribute to hyperglycemia-induced insulin resistance in type 2 diabetes. AGEs gradually form during the chronic high blood glucose condition, which is a major risk factor and harmful to β-cells function and survival, and could alter the insulin signaling and downregulate the insulin-responsive transcription factors including PDX-1, Glut-2, GCK, and Pre-INS. Kaempferia parviflora, also known as black ginger and flavonoid-rich medicinal plant, has beneficial properties for type 2 diabetes patients as a counteracts the detrimental effects of AGEs and improves the insulin production in pancreatic β-cells. Thus, we hypothesize that treated β-cells with K. parviflora, which is the most effective flavonoid-containing plant might protect against the damage of AGEs-induced insulin impairment, and these effects are also responsible for improved insulin synthesis and the essential transcription factors in pancreatic β-cells. Methods Rat pancreatic β-cell line RIN-m5F (ATCC CRL-2058) were maintained and cultured in RPMI 1640 medium containing 10% (v/v) FBS, 1% penicillin-streptomycin at 37◦C in a humidified atmosphere containing 5% CO2. RIN-m5F cells were pre-treated with the K. parviflora at concentrations 0, 25, and 50 µg/ml for 48 hours, and afterward, exposure to 250 µg/ml AGEs treatment. To quantify the bioactive compound of K. parviflora, total phenolic and flavonoid content assays were performed and the transcriptional changes of insulin-related genes (PDX-1, Glut-2, GCK, and Pre-INS) were determined by using real-time qRT-PCR. Results K. parviflora has shown a high phenolic content and flavonoid content was 50.43 ± 1.74, 26.66 ± 1.18 mg GAE/g Dry weight of sample, respectively. For the transcriptional changes of insulin-related genes, the levels of gene expression in the regulators of insulin secreting pathway (PDX-1, Glut-2, GCK, and Pre-INS) were significantly downregulated after exposure to AGEs-treated, while the pre-treatment of K. parviflora was showed statistically difference. PDX-1, Glut-2, GCK, and Pre-INS expressions were significantly upregulated after pre-treated with 50 µg/ml K. parviflora. However, under the AGEs-treated alone condition, the transcriptional levels were significantly decreased as compared to the control (untreated). Taken together, these results suggest K. parviflora could be a potential natural medicine to ameliorate the damage of insulin production in AGEs-induced β-cell damage and highlight promising alternatives for therapeutic avenue against diabetes. Conclusions Treated RIN-m5F pancreatic β-cells with K. parviflora, a flavonoid-rich medicinal plant, could upregulate the insulin-responsive transcription factors and improve the insulin production in damaging AGEs-induced pancreatic β-cells. Our findings provide a novel strategy related metabolic disease and insights into the regulation of insulin synthesis by using K. parviflora treatment as a therapeutic agent against type 2 diabetes.","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"77 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/clinchem/hvae106.063","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background Advanced glycation end-products (AGEs) are glycated proteins that react with reducing sugar which causes the damages of function and cellular signaling of insulin production in insulinoma cells. AGEs also contribute to hyperglycemia-induced insulin resistance in type 2 diabetes. AGEs gradually form during the chronic high blood glucose condition, which is a major risk factor and harmful to β-cells function and survival, and could alter the insulin signaling and downregulate the insulin-responsive transcription factors including PDX-1, Glut-2, GCK, and Pre-INS. Kaempferia parviflora, also known as black ginger and flavonoid-rich medicinal plant, has beneficial properties for type 2 diabetes patients as a counteracts the detrimental effects of AGEs and improves the insulin production in pancreatic β-cells. Thus, we hypothesize that treated β-cells with K. parviflora, which is the most effective flavonoid-containing plant might protect against the damage of AGEs-induced insulin impairment, and these effects are also responsible for improved insulin synthesis and the essential transcription factors in pancreatic β-cells. Methods Rat pancreatic β-cell line RIN-m5F (ATCC CRL-2058) were maintained and cultured in RPMI 1640 medium containing 10% (v/v) FBS, 1% penicillin-streptomycin at 37◦C in a humidified atmosphere containing 5% CO2. RIN-m5F cells were pre-treated with the K. parviflora at concentrations 0, 25, and 50 µg/ml for 48 hours, and afterward, exposure to 250 µg/ml AGEs treatment. To quantify the bioactive compound of K. parviflora, total phenolic and flavonoid content assays were performed and the transcriptional changes of insulin-related genes (PDX-1, Glut-2, GCK, and Pre-INS) were determined by using real-time qRT-PCR. Results K. parviflora has shown a high phenolic content and flavonoid content was 50.43 ± 1.74, 26.66 ± 1.18 mg GAE/g Dry weight of sample, respectively. For the transcriptional changes of insulin-related genes, the levels of gene expression in the regulators of insulin secreting pathway (PDX-1, Glut-2, GCK, and Pre-INS) were significantly downregulated after exposure to AGEs-treated, while the pre-treatment of K. parviflora was showed statistically difference. PDX-1, Glut-2, GCK, and Pre-INS expressions were significantly upregulated after pre-treated with 50 µg/ml K. parviflora. However, under the AGEs-treated alone condition, the transcriptional levels were significantly decreased as compared to the control (untreated). Taken together, these results suggest K. parviflora could be a potential natural medicine to ameliorate the damage of insulin production in AGEs-induced β-cell damage and highlight promising alternatives for therapeutic avenue against diabetes. Conclusions Treated RIN-m5F pancreatic β-cells with K. parviflora, a flavonoid-rich medicinal plant, could upregulate the insulin-responsive transcription factors and improve the insulin production in damaging AGEs-induced pancreatic β-cells. Our findings provide a novel strategy related metabolic disease and insights into the regulation of insulin synthesis by using K. parviflora treatment as a therapeutic agent against type 2 diabetes.
期刊介绍:
Clinical Chemistry is a peer-reviewed scientific journal that is the premier publication for the science and practice of clinical laboratory medicine. It was established in 1955 and is associated with the Association for Diagnostics & Laboratory Medicine (ADLM).
The journal focuses on laboratory diagnosis and management of patients, and has expanded to include other clinical laboratory disciplines such as genomics, hematology, microbiology, and toxicology. It also publishes articles relevant to clinical specialties including cardiology, endocrinology, gastroenterology, genetics, immunology, infectious diseases, maternal-fetal medicine, neurology, nutrition, oncology, and pediatrics.
In addition to original research, editorials, and reviews, Clinical Chemistry features recurring sections such as clinical case studies, perspectives, podcasts, and Q&A articles. It has the highest impact factor among journals of clinical chemistry, laboratory medicine, pathology, analytical chemistry, transfusion medicine, and clinical microbiology.
The journal is indexed in databases such as MEDLINE and Web of Science.