Gravitational wave background from primordial black holes in globular clusters

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of Cosmology and Astroparticle Physics Pub Date : 2024-10-02 DOI:10.1088/1475-7516/2024/10/014
Eleonora Vanzan, Sarah Libanore, Lorenzo Valbusa Dall'Armi, Nicola Bellomo and Alvise Raccanelli
{"title":"Gravitational wave background from primordial black holes in globular clusters","authors":"Eleonora Vanzan, Sarah Libanore, Lorenzo Valbusa Dall'Armi, Nicola Bellomo and Alvise Raccanelli","doi":"10.1088/1475-7516/2024/10/014","DOIUrl":null,"url":null,"abstract":"Primordial black holes still represent a viable candidate for a significant fraction, if not for the totality, of dark matter. If these compact objects have masses of order tens of solar masses, their coalescence can be observed by current and future ground-based gravitational wave detectors. Therefore, finding new gravitational wave signatures associated with this dark matter candidate can either lead to their detection or help constraining their abundance. In this work we consider the phenomenology of primordial black holes in dense environments, in particular globular clusters. We model the internal structure of globular clusters in a semi-analytical fashion, and we derive the expected merger rate. We show that, if primordial black holes are present in globular clusters, their contribution to the GW background can be comparable to other well-known channels, such as early- and late-time binaries, thus enhancing the detectability prospects of primordial black holes and demonstrating that this contribution needs to be taken into account.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/10/014","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Primordial black holes still represent a viable candidate for a significant fraction, if not for the totality, of dark matter. If these compact objects have masses of order tens of solar masses, their coalescence can be observed by current and future ground-based gravitational wave detectors. Therefore, finding new gravitational wave signatures associated with this dark matter candidate can either lead to their detection or help constraining their abundance. In this work we consider the phenomenology of primordial black holes in dense environments, in particular globular clusters. We model the internal structure of globular clusters in a semi-analytical fashion, and we derive the expected merger rate. We show that, if primordial black holes are present in globular clusters, their contribution to the GW background can be comparable to other well-known channels, such as early- and late-time binaries, thus enhancing the detectability prospects of primordial black holes and demonstrating that this contribution needs to be taken into account.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自球状星团中原始黑洞的引力波背景
原始黑洞即使不是暗物质的全部,也仍然是相当一部分暗物质的可行候选者。如果这些小型天体的质量达到几十个太阳质量,那么它们的凝聚过程就能被目前和未来的地面引力波探测器观测到。因此,发现与这种暗物质候选体相关的新引力波特征,要么能探测到它们,要么有助于约束它们的丰度。在这项工作中,我们考虑了高密度环境中原始黑洞的现象学,特别是球状星团。我们以半分析的方式模拟了球状星团的内部结构,并推导出了预期的合并率。我们的研究表明,如果球状星团中存在原始黑洞,那么它们对全球变暖背景的贡献可以与其他众所周知的渠道(如早期和晚期双星)相媲美,从而提高了原始黑洞的可探测性,并证明需要将这种贡献考虑在内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
期刊最新文献
Gravitational waves from a curvature-induced phase transition of a Higgs-portal dark matter sector Theory of interacting vector dark energy and fluid Constraining UV freeze-in of light relics with current and next-generation CMB observations Axion-induced patchy screening of the Cosmic Microwave Background Higgs inflation via a metastable standard model potential, generalised renormalisation frame prescriptions and predictions for primordial gravitational waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1