首页 > 最新文献

Journal of Cosmology and Astroparticle Physics最新文献

英文 中文
Spectral distortions from acoustic dissipation with non-Gaussian (or not) perturbations 具有非高斯(或非高斯)扰动的声耗散产生的频谱失真
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-30 DOI: 10.1088/1475-7516/2024/07/090
Devanshu Sharma, Julien Lesgourgues and Christian T. Byrnes
A well-known route to form primordial black holes in the early universe relies on the existence of unusually large primordial curvature fluctuations, confined to a narrow range of wavelengths that would be too small to be constrained by Cosmic Microwave Background (CMB) anisotropies. This scenario would however boost the generation of μ-type spectral distortions in the CMB due to an enhanced dissipation of acoustic waves. Previous studies of μ-distortion bounds on the primordial spectrum were based on the assumptions of Gaussian primordial fluctuations. In this work, we push the calculation of μ-distortions to one higher order in photon anisotropies. We discuss how to derive bounds on primordial spectrum peaks obeying non-Gaussian statistics under the assumption of local (perturbative or not) non-Gaussianity. We find that, depending on the value of the peak scale, the bounds may either remain stable or get tighter by several orders of magnitude, but only when the departure from Gaussian statistics is very strong. Our results are translated in terms of bounds on primordial supermassive black hole mass in a companion paper.
{"title":"Spectral distortions from acoustic dissipation with non-Gaussian (or not) perturbations","authors":"Devanshu Sharma, Julien Lesgourgues and Christian T. Byrnes","doi":"10.1088/1475-7516/2024/07/090","DOIUrl":"https://doi.org/10.1088/1475-7516/2024/07/090","url":null,"abstract":"A well-known route to form primordial black holes in the early universe relies on the existence of unusually large primordial curvature fluctuations, confined to a narrow range of wavelengths that would be too small to be constrained by Cosmic Microwave Background (CMB) anisotropies. This scenario would however boost the generation of μ-type spectral distortions in the CMB due to an enhanced dissipation of acoustic waves. Previous studies of μ-distortion bounds on the primordial spectrum were based on the assumptions of Gaussian primordial fluctuations. In this work, we push the calculation of μ-distortions to one higher order in photon anisotropies. We discuss how to derive bounds on primordial spectrum peaks obeying non-Gaussian statistics under the assumption of local (perturbative or not) non-Gaussianity. We find that, depending on the value of the peak scale, the bounds may either remain stable or get tighter by several orders of magnitude, but only when the departure from Gaussian statistics is very strong. Our results are translated in terms of bounds on primordial supermassive black hole mass in a companion paper.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LiteBIRD science goals and forecasts: primordial magnetic fields LiteBIRD 科学目标和预测:原始磁场
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-30 DOI: 10.1088/1475-7516/2024/07/086
D. Paoletti, J.A. Rubino-Martin, M. Shiraishi, D. Molinari, J. Chluba, F. Finelli, C. Baccigalupi, J. Errard, A. Gruppuso, A.I. Lonappan, A. Tartari, E. Allys, A. Anand, J. Aumont, M. Ballardini, A.J. Banday, R.B. Barreiro, N. Bartolo, M. Bersanelli, M. Bortolami, T. Brinckmann, E. Calabrese, P. Campeti, A. Carones, F.J. Casas, K. Cheung, L. Clermont, F. Columbro, G. Conenna, A. Coppolecchia, F. Cuttaia, G. D'Alessandro, P. de Bernardis, S. Della Torre, P. Diego-Palazuelos, H.K. Eriksen, U. Fuskeland, G. Galloni, M. Galloway, M. Gerbino, M. Gervasi, T. Ghigna, S. Giardiello, C. Gimeno-Amo, E. Gjerløw, F. Grupp, M. Hazumi, S. Henrot-Versillé, L.T. Hergt, E. Hivon, K. Ichiki, H. Ishino, K. Kohri, E. Komatsu, N. Krachmalnicoff, L. Lamagna, M. Lattanzi, M. Lembo, F. Levrier, M. López-Caniego, G. Luzzi, E. Martínez-González, S. Masi, S. Matarrese, S. Micheli, M. Migliaccio, M. Monelli, L. Montier, G. Morgante, L. Mousset, R. Nagata, T. Namikawa, P. Natoli, A. Novelli, I. Obata, A...
We present detailed forecasts for the constraints on the characteristics of primordial magnetic fields (PMFs) generated prior to recombination that will be obtained with the LiteBIRD satellite. The constraints are driven by some of the main physical effects of PMFs on the CMB anisotropies: the gravitational effects of magnetically-induced perturbations; the effects on the thermal and ionization history of the Universe; the Faraday rotation imprint on the CMB polarization spectra; and the non-Gaussianities induced in polarization anisotropies. LiteBIRD represents a sensitive probe for PMFs. We explore different levels of complexity, for LiteBIRD data and PMF configurations, accounting for possible degeneracies with primordial gravitational waves from inflation. By exploiting all the physical effects, LiteBIRD will be able to improve the current limit on PMFs at intermediate and large scales coming from Planck. In particular, thanks to its accurate B-mode polarization measurement, LiteBIRD will improve the constraints on infrared configurations for the gravitational effect, giving BnB=-2.91 Mpc< 0.8 nG at 95% C.L., potentially opening the possibility to detect nanogauss fields with high significance. We also observe a significant improvement in the limits when marginalized over the spectral index, BnBmarg1 Mpc< 2.2 nG at 95 % C.L. From the thermal history effect, which relies mainly on E-mode polarization data, we obtain a significant improvement for all PMF configurations, with the marginalized case, √⟨B2⟩marg<0.50 nG at 95 % C.L. Faraday rotation constraints will take advantage of the wide frequency coverage of LiteBIRD and the high sensitivity in B modes, improving the limits by orders of magnitude with respect to current results, BnB=-2.91 Mpc < 3.2 nG at 95 % C.L. Finally, non-Gaussianities of the B-mode polarization can probe PMFs at the level of 1 nG, again significantly improving the current bounds from Planck. Altogether our forecasts represent a broad collection of complementary probes based on widely tested methodologies, providing conservative limits on PMF characteristics that will be achieved with the LiteBIRD satellite.
{"title":"LiteBIRD science goals and forecasts: primordial magnetic fields","authors":"D. Paoletti, J.A. Rubino-Martin, M. Shiraishi, D. Molinari, J. Chluba, F. Finelli, C. Baccigalupi, J. Errard, A. Gruppuso, A.I. Lonappan, A. Tartari, E. Allys, A. Anand, J. Aumont, M. Ballardini, A.J. Banday, R.B. Barreiro, N. Bartolo, M. Bersanelli, M. Bortolami, T. Brinckmann, E. Calabrese, P. Campeti, A. Carones, F.J. Casas, K. Cheung, L. Clermont, F. Columbro, G. Conenna, A. Coppolecchia, F. Cuttaia, G. D'Alessandro, P. de Bernardis, S. Della Torre, P. Diego-Palazuelos, H.K. Eriksen, U. Fuskeland, G. Galloni, M. Galloway, M. Gerbino, M. Gervasi, T. Ghigna, S. Giardiello, C. Gimeno-Amo, E. Gjerløw, F. Grupp, M. Hazumi, S. Henrot-Versillé, L.T. Hergt, E. Hivon, K. Ichiki, H. Ishino, K. Kohri, E. Komatsu, N. Krachmalnicoff, L. Lamagna, M. Lattanzi, M. Lembo, F. Levrier, M. López-Caniego, G. Luzzi, E. Martínez-González, S. Masi, S. Matarrese, S. Micheli, M. Migliaccio, M. Monelli, L. Montier, G. Morgante, L. Mousset, R. Nagata, T. Namikawa, P. Natoli, A. Novelli, I. Obata, A...","doi":"10.1088/1475-7516/2024/07/086","DOIUrl":"https://doi.org/10.1088/1475-7516/2024/07/086","url":null,"abstract":"We present detailed forecasts for the constraints on the characteristics of primordial magnetic fields (PMFs) generated prior to recombination that will be obtained with the LiteBIRD satellite. The constraints are driven by some of the main physical effects of PMFs on the CMB anisotropies: the gravitational effects of magnetically-induced perturbations; the effects on the thermal and ionization history of the Universe; the Faraday rotation imprint on the CMB polarization spectra; and the non-Gaussianities induced in polarization anisotropies. LiteBIRD represents a sensitive probe for PMFs. We explore different levels of complexity, for LiteBIRD data and PMF configurations, accounting for possible degeneracies with primordial gravitational waves from inflation. By exploiting all the physical effects, LiteBIRD will be able to improve the current limit on PMFs at intermediate and large scales coming from Planck. In particular, thanks to its accurate B-mode polarization measurement, LiteBIRD will improve the constraints on infrared configurations for the gravitational effect, giving BnB=-2.91 Mpc< 0.8 nG at 95% C.L., potentially opening the possibility to detect nanogauss fields with high significance. We also observe a significant improvement in the limits when marginalized over the spectral index, BnBmarg1 Mpc< 2.2 nG at 95 % C.L. From the thermal history effect, which relies mainly on E-mode polarization data, we obtain a significant improvement for all PMF configurations, with the marginalized case, √⟨B2⟩marg<0.50 nG at 95 % C.L. Faraday rotation constraints will take advantage of the wide frequency coverage of LiteBIRD and the high sensitivity in B modes, improving the limits by orders of magnitude with respect to current results, BnB=-2.91 Mpc < 3.2 nG at 95 % C.L. Finally, non-Gaussianities of the B-mode polarization can probe PMFs at the level of 1 nG, again significantly improving the current bounds from Planck. Altogether our forecasts represent a broad collection of complementary probes based on widely tested methodologies, providing conservative limits on PMF characteristics that will be achieved with the LiteBIRD satellite.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A non-perturbative and background-independent formulation of quadratic gravity 二次引力的非微扰和背景无关公式
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-30 DOI: 10.1088/1475-7516/2024/07/092
Alberto Salvio
A non-perturbative and background-independent quantum formulation of quadratic gravity is provided. A canonical quantization procedure introduced in previous works, named after Dirac and Pauli, is here applied to quadratic gravity to obtain, as required by consistency, a well-defined Euclidean path integral. The theory is unitary: all probabilities are non negative and they sum up to one. We obtain path-integral expressions for the transition amplitudes, Green's functions and generic matrix elements of time-ordered products of the metric. As a byproduct, similar results are also obtained for a scalar-field four-derivative interacting model. In this way, among other things, previous perturbative and background-dependent calculations are justified. The (quantum) quadratic gravity effective action, whose field equations determine the vacuum expectation value of the metric in the presence of a generic energy-momentum tensor, is constructed. The classical limit of the effective action turns out to be equivalent to the starting classical action of quadratic gravity, whose runaway rates were previously shown to be slow enough to be compatible with observations. Finally, the constructed non-perturbative and background-independent quantum quadratic gravity is applied to quantum cosmology to obtain a path-integral expression for the wave function of the universe, which satisfies a sort of Wheeler-DeWitt equation. This application allows us to understand at the quantum level why our universe is nearly homogeneous and isotropic.
{"title":"A non-perturbative and background-independent formulation of quadratic gravity","authors":"Alberto Salvio","doi":"10.1088/1475-7516/2024/07/092","DOIUrl":"https://doi.org/10.1088/1475-7516/2024/07/092","url":null,"abstract":"A non-perturbative and background-independent quantum formulation of quadratic gravity is provided. A canonical quantization procedure introduced in previous works, named after Dirac and Pauli, is here applied to quadratic gravity to obtain, as required by consistency, a well-defined Euclidean path integral. The theory is unitary: all probabilities are non negative and they sum up to one. We obtain path-integral expressions for the transition amplitudes, Green's functions and generic matrix elements of time-ordered products of the metric. As a byproduct, similar results are also obtained for a scalar-field four-derivative interacting model. In this way, among other things, previous perturbative and background-dependent calculations are justified. The (quantum) quadratic gravity effective action, whose field equations determine the vacuum expectation value of the metric in the presence of a generic energy-momentum tensor, is constructed. The classical limit of the effective action turns out to be equivalent to the starting classical action of quadratic gravity, whose runaway rates were previously shown to be slow enough to be compatible with observations. Finally, the constructed non-perturbative and background-independent quantum quadratic gravity is applied to quantum cosmology to obtain a path-integral expression for the wave function of the universe, which satisfies a sort of Wheeler-DeWitt equation. This application allows us to understand at the quantum level why our universe is nearly homogeneous and isotropic.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cosmic Inflation at the crossroads 处于十字路口的宇宙膨胀
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-30 DOI: 10.1088/1475-7516/2024/07/087
Jérôme Martin, Christophe Ringeval and Vincent Vennin
The capability of Cosmic Inflation to explain the latest Cosmic Microwave Background and Baryonic Acoustic Oscillation data is assessed by performing Bayesian model comparison within the landscape of nearly three-hundred models of single-field slow-roll inflation. We present the first Bayesian data analysis based on the third-order slow-roll primordial power spectra. In particular, the fourth Hubble-flow function ε4 remains unbounded while the third function verifies, at two-sigma, ε3 ∈[-0.4,0.5], which is perfectly compatible with the slow-roll predictions for the running of the spectral index. We also observe some residual excess of B-modes within the BICEP/Keck data favoring, at a non-statistically significant level, non-vanishing primordial tensor modes: log(ε1) > -3.9, at 68% confidence level. Then, for 287 models of single-field inflation, we compute the Bayesian evidence, the Bayesian dimensionality and the marginalized posteriors of all the models' parameters, including the ones associated with the reheating era. The average information gain on the reheating parameter Rreh reaches 1.3 ± 0.18 bits, which is more than a factor two improvement compared to the first Planck data release. As such, inflationary model predictions cannot meet data accuracy without specifying, or marginalizing over, the reheating kinematics. We also find that more than 40% of the scenarios are now strongly disfavored, which shows that the constraining power of cosmological data is winning against the increase of the number of proposed models. In addition, about 20% of all models have evidences within the most probable region and are all favored according to the Jeffreys' scale of Bayesian evidences.
{"title":"Cosmic Inflation at the crossroads","authors":"Jérôme Martin, Christophe Ringeval and Vincent Vennin","doi":"10.1088/1475-7516/2024/07/087","DOIUrl":"https://doi.org/10.1088/1475-7516/2024/07/087","url":null,"abstract":"The capability of Cosmic Inflation to explain the latest Cosmic Microwave Background and Baryonic Acoustic Oscillation data is assessed by performing Bayesian model comparison within the landscape of nearly three-hundred models of single-field slow-roll inflation. We present the first Bayesian data analysis based on the third-order slow-roll primordial power spectra. In particular, the fourth Hubble-flow function ε4 remains unbounded while the third function verifies, at two-sigma, ε3 ∈[-0.4,0.5], which is perfectly compatible with the slow-roll predictions for the running of the spectral index. We also observe some residual excess of B-modes within the BICEP/Keck data favoring, at a non-statistically significant level, non-vanishing primordial tensor modes: log(ε1) > -3.9, at 68% confidence level. Then, for 287 models of single-field inflation, we compute the Bayesian evidence, the Bayesian dimensionality and the marginalized posteriors of all the models' parameters, including the ones associated with the reheating era. The average information gain on the reheating parameter Rreh reaches 1.3 ± 0.18 bits, which is more than a factor two improvement compared to the first Planck data release. As such, inflationary model predictions cannot meet data accuracy without specifying, or marginalizing over, the reheating kinematics. We also find that more than 40% of the scenarios are now strongly disfavored, which shows that the constraining power of cosmological data is winning against the increase of the number of proposed models. In addition, about 20% of all models have evidences within the most probable region and are all favored according to the Jeffreys' scale of Bayesian evidences.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting primordial black hole capture by neutron stars 重新审视中子星对原始黑洞的俘获
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-30 DOI: 10.1088/1475-7516/2024/07/091
Roberto Caiozzo, Gianfranco Bertone and Florian Kühnel
A sub-solar mass primordial black hole (PBH) passing through a neutron star, can lose enough energy through interactions with the dense stellar medium to become gravitationally bound to the star. Once captured, the PBH would sink to the core of the neutron star, and completely consume it from the inside. In this paper, we improve previous energy-loss calculations by considering a realistic solution for the neutron star interior, and refine the treatment of the interaction dynamics and collapse likelihood. We then consider the effect of a sub-solar PBH population on neutron stars near the Galactic center. We find that it is not possible to explain the lack of observed pulsars near the galactic center through dynamical capture of PBHs, as the velocity dispersion is too high. We then show that future observations of old neutron stars close to Sgr A* could set stringent constraints on the PBHs abundance. These cannot however be extended in the currently unconstrained asteroid-mass range, since PBHs of smaller mass would lose less energy in their interaction with the neutron star and end up in orbits that are too loosely bound and likely to be disrupted by other stars in the Galactic center.
{"title":"Revisiting primordial black hole capture by neutron stars","authors":"Roberto Caiozzo, Gianfranco Bertone and Florian Kühnel","doi":"10.1088/1475-7516/2024/07/091","DOIUrl":"https://doi.org/10.1088/1475-7516/2024/07/091","url":null,"abstract":"A sub-solar mass primordial black hole (PBH) passing through a neutron star, can lose enough energy through interactions with the dense stellar medium to become gravitationally bound to the star. Once captured, the PBH would sink to the core of the neutron star, and completely consume it from the inside. In this paper, we improve previous energy-loss calculations by considering a realistic solution for the neutron star interior, and refine the treatment of the interaction dynamics and collapse likelihood. We then consider the effect of a sub-solar PBH population on neutron stars near the Galactic center. We find that it is not possible to explain the lack of observed pulsars near the galactic center through dynamical capture of PBHs, as the velocity dispersion is too high. We then show that future observations of old neutron stars close to Sgr A* could set stringent constraints on the PBHs abundance. These cannot however be extended in the currently unconstrained asteroid-mass range, since PBHs of smaller mass would lose less energy in their interaction with the neutron star and end up in orbits that are too loosely bound and likely to be disrupted by other stars in the Galactic center.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constraining ultra slow roll inflation using cosmological datasets 利用宇宙学数据集制约超慢速滚动膨胀
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-30 DOI: 10.1088/1475-7516/2024/07/088
H.V. Ragavendra, Anjan Kumar Sarkar and Shiv K. Sethi
In recent years, the detection of gravitational waves by LIGO and PTA collaborations have raised the intriguing possibility of excess matter power at small scales. Such an increase can be achieved by ultra slow roll (USR) phase during inflationary epoch. We constrain excess power over small scales within the framework of such models using cosmological datasets, particularly of CMB anisotropies and Lyman-α. We parameterize the USR phase in terms of the e-fold at the onset of USR (counted from the end of inflation) N̅1 and the duration of USR phase Δ N. The former dictates the scale of enhancement in the primordial power spectrum, while the latter determines the amplitude of such an enhancement. From a joint dataset of CMB and galaxy surveys, we obtain N̅1 ≲ 45 with no bound on Δ N. This in turn implies that the scales over which the power spectrum can deviate significantly from the nearly scale invariant behavior of a typical slow-roll model is k ≳1 Mpc-1. On the other hand, the Lyman-α data is sensitive to baryonic power spectrum along the line of sight. We consider a semi-analytic theoretical method and high spectral-resolution Lyman-α data to constrain the model. The Lyman-α data limits both the USR parameters: N̅1 ≲ 41 and Δ N ≲ 0.4. This constrains the amplitude of the power spectrum enhancement to be less than a factor of hundred over scales 1 ≲ k/ Mpc-1≲ 100, thereby considerably improving the constraint on power over these scales as compared to the bounds arrived at from CMB spectral distortion.
{"title":"Constraining ultra slow roll inflation using cosmological datasets","authors":"H.V. Ragavendra, Anjan Kumar Sarkar and Shiv K. Sethi","doi":"10.1088/1475-7516/2024/07/088","DOIUrl":"https://doi.org/10.1088/1475-7516/2024/07/088","url":null,"abstract":"In recent years, the detection of gravitational waves by LIGO and PTA collaborations have raised the intriguing possibility of excess matter power at small scales. Such an increase can be achieved by ultra slow roll (USR) phase during inflationary epoch. We constrain excess power over small scales within the framework of such models using cosmological datasets, particularly of CMB anisotropies and Lyman-α. We parameterize the USR phase in terms of the e-fold at the onset of USR (counted from the end of inflation) N̅1 and the duration of USR phase Δ N. The former dictates the scale of enhancement in the primordial power spectrum, while the latter determines the amplitude of such an enhancement. From a joint dataset of CMB and galaxy surveys, we obtain N̅1 ≲ 45 with no bound on Δ N. This in turn implies that the scales over which the power spectrum can deviate significantly from the nearly scale invariant behavior of a typical slow-roll model is k ≳1 Mpc-1. On the other hand, the Lyman-α data is sensitive to baryonic power spectrum along the line of sight. We consider a semi-analytic theoretical method and high spectral-resolution Lyman-α data to constrain the model. The Lyman-α data limits both the USR parameters: N̅1 ≲ 41 and Δ N ≲ 0.4. This constrains the amplitude of the power spectrum enhancement to be less than a factor of hundred over scales 1 ≲ k/ Mpc-1≲ 100, thereby considerably improving the constraint on power over these scales as compared to the bounds arrived at from CMB spectral distortion.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum geodesics reflecting the internal structure of stars composed of shells 反映由外壳组成的恒星内部结构的量子测地线
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-30 DOI: 10.1088/1475-7516/2024/07/089
Sojeong Cheong and Wontae Kim
In general relativity, an external observer cannot distinguish distinct internal structures between two spherically symmetric stars that have the same total mass M. However, when quantum corrections are taken into account, the external metrics of the stars will receive quantum corrections depending on their internal structures. In this paper, we obtain the quantum-corrected metrics at linear order in curvature for two spherically symmetric shells characterized by different internal structures: one with an empty interior and the other with N internal shells. The dependence on the internal structures in the corrected metrics tells us that geodesics on these backgrounds would be deformed according to the internal structures. We conduct numerical computations to find out the angle of geodesic precession and show that the presence of internal structures amplifies the precession angle reflecting the discrepancy between the radial and orbital periods within the geodesic orbit. The amount of the precession angle increases monotonically as the number of internal shells increases and it eventually converges to a certain value for N ⟶ ∞.
{"title":"Quantum geodesics reflecting the internal structure of stars composed of shells","authors":"Sojeong Cheong and Wontae Kim","doi":"10.1088/1475-7516/2024/07/089","DOIUrl":"https://doi.org/10.1088/1475-7516/2024/07/089","url":null,"abstract":"In general relativity, an external observer cannot distinguish distinct internal structures between two spherically symmetric stars that have the same total mass M. However, when quantum corrections are taken into account, the external metrics of the stars will receive quantum corrections depending on their internal structures. In this paper, we obtain the quantum-corrected metrics at linear order in curvature for two spherically symmetric shells characterized by different internal structures: one with an empty interior and the other with N internal shells. The dependence on the internal structures in the corrected metrics tells us that geodesics on these backgrounds would be deformed according to the internal structures. We conduct numerical computations to find out the angle of geodesic precession and show that the presence of internal structures amplifies the precession angle reflecting the discrepancy between the radial and orbital periods within the geodesic orbit. The amount of the precession angle increases monotonically as the number of internal shells increases and it eventually converges to a certain value for N ⟶ ∞.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadratic perturbations of the Schwarzschild black hole: the algebraically special sector 施瓦兹柴尔德黑洞的二次扰动:代数特殊部门
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-30 DOI: 10.1088/1475-7516/2024/07/085
Jibril Ben Achour and Hugo Roussille
We investigate quadratic algebraically special perturbations (ASPs) of the Schwarzschild black hole. Their dynamics are derived from the expansion up to second order in perturbation of the most general algebraically special twisting vacuum solution of general relativity. Following this strategy, we present analytical expressions for the axial-axial, polar-polar and polar-axial source terms entering in the dynamical equations. We show that these complicated inhomogeneous equations can be solved analytically and we present explicit expressions for the profiles of the quadratic ASPs. As expected, they exhibit exponential growth both at the past and future horizons even in the non-linear regime. We further use this result to analyze the quadratic zero modes and their interpretation in terms of quadratic corrections to mass and spin of the Schwarzschild black hole. The present work provides a direct extension beyond the linear regime of the original work by Couch and Newman.
{"title":"Quadratic perturbations of the Schwarzschild black hole: the algebraically special sector","authors":"Jibril Ben Achour and Hugo Roussille","doi":"10.1088/1475-7516/2024/07/085","DOIUrl":"https://doi.org/10.1088/1475-7516/2024/07/085","url":null,"abstract":"We investigate quadratic algebraically special perturbations (ASPs) of the Schwarzschild black hole. Their dynamics are derived from the expansion up to second order in perturbation of the most general algebraically special twisting vacuum solution of general relativity. Following this strategy, we present analytical expressions for the axial-axial, polar-polar and polar-axial source terms entering in the dynamical equations. We show that these complicated inhomogeneous equations can be solved analytically and we present explicit expressions for the profiles of the quadratic ASPs. As expected, they exhibit exponential growth both at the past and future horizons even in the non-linear regime. We further use this result to analyze the quadratic zero modes and their interpretation in terms of quadratic corrections to mass and spin of the Schwarzschild black hole. The present work provides a direct extension beyond the linear regime of the original work by Couch and Newman.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of the magnetic horizon on the interpretation of the Pierre Auger Observatory spectrum and composition data 磁层对皮埃尔-奥格天文台光谱和成分数据解读的影响
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-30 DOI: 10.1088/1475-7516/2024/07/094
A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, R. Aloisio, J. Alvarez-Muñiz, J. Ammerman Yebra, G.A. Anastasi, L. Anchordoqui, B. Andrada, S. Andringa, L. Apollonio, C. Aramo, P.R. Araújo Ferreira, E. Arnone, J.C. Arteaga Velázquez, P. Assis, G. Avila, E. Avocone, A. Bakalova, F. Barbato, A. Bartz Mocellin, J.A. Bellido, C. Berat, M.E. Bertaina, G. Bhatta, M. Bianciotto, P.L. Biermann, V. Binet, K. Bismark, T. Bister, J. Biteau, J. Blazek, C. Bleve, J. Blümer, M. Boháčová, D. Boncioli, C. Bonifazi, L. Bonneau Arbeletche, N. Borodai, J. Brack, P.G. Brichetto Orchera, F.L. Briechle, A. Bueno, S. Buitink, M. Buscemi, M. Büsken, A. Bwembya, K.S. Caballero-Mora, S. Cabana-Freire, L. Caccianiga, F. Campuzano, R. Caruso, A. Castellina, F. Catalani, G. Cataldi, L. Cazon, M. Cerda, A. Cermenati, J.A. Chinellato, J. Chudoba, L. Chytka, R.W. Clay, A.C. Cobos Cerutti, R. Colalillo, M.R. Coluccia, R. Conceição, A. Condorelli, G. Consolati, M. Conte, ..
The flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff. Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux of low-rigidity particles reaching Earth. We perform a combined fit of the spectrum and distributions of depth of shower maximum measured with the Pierre Auger Observatory including the effect of this magnetic horizon in the propagation of UHECRs in the intergalactic space. We find that, within a specific range of the various experimental and phenomenological systematics, the magnetic horizon effect can be relevant for turbulent magnetic field strengths in the local neighbourhood in which the closest sources lie of order Brms ≃ (50–100) nG (20 Mpc/ds)( 100 kpc/Lcoh)1/2, with ds the typical intersource separation and Lcoh the magnetic field coherence length. When this is the case, the inferred slope of the source spectrum becomes softer and can be closer to the expectations of diffusive shock acceleration, i.e., ∝ E-2. An additional cosmic-ray population with higher source density and softer spectra, presumably also extragalactic and dominating the cosmic-ray flux at EeV energies, is also required to reproduce the overall spectrum and composition results for all energies down to 0.6 EeV.
{"title":"Impact of the magnetic horizon on the interpretation of the Pierre Auger Observatory spectrum and composition data","authors":"A. Abdul Halim, P. Abreu, M. Aglietta, I. Allekotte, K. Almeida Cheminant, A. Almela, R. Aloisio, J. Alvarez-Muñiz, J. Ammerman Yebra, G.A. Anastasi, L. Anchordoqui, B. Andrada, S. Andringa, L. Apollonio, C. Aramo, P.R. Araújo Ferreira, E. Arnone, J.C. Arteaga Velázquez, P. Assis, G. Avila, E. Avocone, A. Bakalova, F. Barbato, A. Bartz Mocellin, J.A. Bellido, C. Berat, M.E. Bertaina, G. Bhatta, M. Bianciotto, P.L. Biermann, V. Binet, K. Bismark, T. Bister, J. Biteau, J. Blazek, C. Bleve, J. Blümer, M. Boháčová, D. Boncioli, C. Bonifazi, L. Bonneau Arbeletche, N. Borodai, J. Brack, P.G. Brichetto Orchera, F.L. Briechle, A. Bueno, S. Buitink, M. Buscemi, M. Büsken, A. Bwembya, K.S. Caballero-Mora, S. Cabana-Freire, L. Caccianiga, F. Campuzano, R. Caruso, A. Castellina, F. Catalani, G. Cataldi, L. Cazon, M. Cerda, A. Cermenati, J.A. Chinellato, J. Chudoba, L. Chytka, R.W. Clay, A.C. Cobos Cerutti, R. Colalillo, M.R. Coluccia, R. Conceição, A. Condorelli, G. Consolati, M. Conte, ..","doi":"10.1088/1475-7516/2024/07/094","DOIUrl":"https://doi.org/10.1088/1475-7516/2024/07/094","url":null,"abstract":"The flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff. Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux of low-rigidity particles reaching Earth. We perform a combined fit of the spectrum and distributions of depth of shower maximum measured with the Pierre Auger Observatory including the effect of this magnetic horizon in the propagation of UHECRs in the intergalactic space. We find that, within a specific range of the various experimental and phenomenological systematics, the magnetic horizon effect can be relevant for turbulent magnetic field strengths in the local neighbourhood in which the closest sources lie of order Brms ≃ (50–100) nG (20 Mpc/ds)( 100 kpc/Lcoh)1/2, with ds the typical intersource separation and Lcoh the magnetic field coherence length. When this is the case, the inferred slope of the source spectrum becomes softer and can be closer to the expectations of diffusive shock acceleration, i.e., ∝ E-2. An additional cosmic-ray population with higher source density and softer spectra, presumably also extragalactic and dominating the cosmic-ray flux at EeV energies, is also required to reproduce the overall spectrum and composition results for all energies down to 0.6 EeV.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An implementation of nDGP gravity in Pinocchio 皮诺曹中 nDGP 重力的实现
IF 6.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-30 DOI: 10.1088/1475-7516/2024/07/093
Yanling Song, Bin Hu, Cheng-Zong Ruan, Chiara Moretti and Pierluigi Monaco
In this paper we investigate dark matter structure formation in the normal branch of the Dvali-Gabadadze-Porrati (nDGP) model using the PINOCCHIO algorithm. We first present 2nd order Lagrangian perturbation theory for the nDGP model, which shows that the 1st- and 2nd-order growth functions in nDGP are larger than those in ΛCDM. We then examine the dynamics of ellipsoidal collapse in nDGP, which is accelerated compared to ΛCDM due to enhanced gravitational interactions. Running the nDGP-PINOCCHIO code with a box size of 512 Mpc h-1 and 10243 particles, we analyze the statistical properties of the output halo catalogs, including the halo power spectrum and halo mass function. The calibrated PINOCCHIO halo power spectrum agrees with N-body simulations within 5% in the comoving wavenumber range k<0.3 (h Mpc-1) at redshift z=0. The agreement is extended to smaller scales for higher redshifts. For the cumulative halo mass function, the agreement between N-body and PINOCCHIO is also within the simulation scatter.
{"title":"An implementation of nDGP gravity in Pinocchio","authors":"Yanling Song, Bin Hu, Cheng-Zong Ruan, Chiara Moretti and Pierluigi Monaco","doi":"10.1088/1475-7516/2024/07/093","DOIUrl":"https://doi.org/10.1088/1475-7516/2024/07/093","url":null,"abstract":"In this paper we investigate dark matter structure formation in the normal branch of the Dvali-Gabadadze-Porrati (nDGP) model using the PINOCCHIO algorithm. We first present 2nd order Lagrangian perturbation theory for the nDGP model, which shows that the 1st- and 2nd-order growth functions in nDGP are larger than those in ΛCDM. We then examine the dynamics of ellipsoidal collapse in nDGP, which is accelerated compared to ΛCDM due to enhanced gravitational interactions. Running the nDGP-PINOCCHIO code with a box size of 512 Mpc h-1 and 10243 particles, we analyze the statistical properties of the output halo catalogs, including the halo power spectrum and halo mass function. The calibrated PINOCCHIO halo power spectrum agrees with N-body simulations within 5% in the comoving wavenumber range k<0.3 (h Mpc-1) at redshift z=0. The agreement is extended to smaller scales for higher redshifts. For the cumulative halo mass function, the agreement between N-body and PINOCCHIO is also within the simulation scatter.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":null,"pages":null},"PeriodicalIF":6.4,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141857723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Cosmology and Astroparticle Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1