Synergistic force of green-synthesized zero-valent iron nanocomposites combined with different fertilizers for inhibiting cadmium accumulation in wheat†
Lei Peng, Yinglin Liu, Nan Xu, Yifei Feng, Jilong Xiong, Xuelian Wang, Wenxin Jiang and Jin Jin
{"title":"Synergistic force of green-synthesized zero-valent iron nanocomposites combined with different fertilizers for inhibiting cadmium accumulation in wheat†","authors":"Lei Peng, Yinglin Liu, Nan Xu, Yifei Feng, Jilong Xiong, Xuelian Wang, Wenxin Jiang and Jin Jin","doi":"10.1039/D4EN00827H","DOIUrl":null,"url":null,"abstract":"<p >The essential nutrients for healthy crop growth may affect the nanotechnology-based remediation of agricultural soils contaminated with cadmium (Cd). However, this hypothesis has not been thoroughly explored. This study investigated the Cd biotransformation and accumulation in wheat growing under a hydroponic system regulated by various nitrogen (N) and phosphate (P) fertilizers, after treatment with green-synthesized nano-zero-valent iron supported by diatomite (GnZVI@DE) composites. We found that the presence of urea–N and P with GnZVI@DE respectively inhibited Cd accumulation by 67.7% and 26.2% in wheat seedlings, alleviating further oxidative damage to wheat. This was because urea–N promoted the dispersion of GnZVI@DE particles that originated from increased steric hindrance. P induced the polyphosphate production on tea polyphenols covering GnZVI@DE, increasing Cd(<small>II</small>) adsorption and precipitation by 47.9% for lesser uptake by root surfaces. Conversely, nitrate-N and ammonium-N promoted Cd accumulation in wheat shoots by 86.0% and 26.3%. This was mainly attributed to reduced Cd immobilization by nanocomposites due to GnZVI@DE oxidation by nitrate and competitive adsorption by ammonium. Our study provides insights for developing a sustainable strategy for the remediation of Cd-contaminated soils and the healthy growth of wheat achieved by the synergistic force of nano-amendments combined with urea and phosphate fertilizers.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 11","pages":" 4475-4486"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00827h","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The essential nutrients for healthy crop growth may affect the nanotechnology-based remediation of agricultural soils contaminated with cadmium (Cd). However, this hypothesis has not been thoroughly explored. This study investigated the Cd biotransformation and accumulation in wheat growing under a hydroponic system regulated by various nitrogen (N) and phosphate (P) fertilizers, after treatment with green-synthesized nano-zero-valent iron supported by diatomite (GnZVI@DE) composites. We found that the presence of urea–N and P with GnZVI@DE respectively inhibited Cd accumulation by 67.7% and 26.2% in wheat seedlings, alleviating further oxidative damage to wheat. This was because urea–N promoted the dispersion of GnZVI@DE particles that originated from increased steric hindrance. P induced the polyphosphate production on tea polyphenols covering GnZVI@DE, increasing Cd(II) adsorption and precipitation by 47.9% for lesser uptake by root surfaces. Conversely, nitrate-N and ammonium-N promoted Cd accumulation in wheat shoots by 86.0% and 26.3%. This was mainly attributed to reduced Cd immobilization by nanocomposites due to GnZVI@DE oxidation by nitrate and competitive adsorption by ammonium. Our study provides insights for developing a sustainable strategy for the remediation of Cd-contaminated soils and the healthy growth of wheat achieved by the synergistic force of nano-amendments combined with urea and phosphate fertilizers.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis