Strong and Ultrahigh Temperature-Resistant Metal Oxide Nanobelt Aerogels

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-10-02 DOI:10.1002/adfm.202414592
Xiaodong Wang, Yijun Wang, Ze Zhang, Zhiyang Zhao, Ting Liu, Yulin Tian, Xiaoxue Zhang, Snigdha Burkule, Wim J. Malfait, Shanyu Zhao, Zhihua Zhang, Jun Shen
{"title":"Strong and Ultrahigh Temperature-Resistant Metal Oxide Nanobelt Aerogels","authors":"Xiaodong Wang, Yijun Wang, Ze Zhang, Zhiyang Zhao, Ting Liu, Yulin Tian, Xiaoxue Zhang, Snigdha Burkule, Wim J. Malfait, Shanyu Zhao, Zhihua Zhang, Jun Shen","doi":"10.1002/adfm.202414592","DOIUrl":null,"url":null,"abstract":"Metal oxide aerogels, inorganic cousins of the highly commercialized metalloid oxide silica aerogels, exhibit distinct properties specific to each type. Nevertheless, they share a common challenge with silica aerogels—brittleness and low mechanical strength due to their particulate necklace-like structure. In contrast, polymer aerogels often boast significantly enhanced mechanical properties thanks to their nanofibrillated networks. To enhance the mechanical properties of metal oxide aerogels, the metal oxide formation with a polymeric nanostructure is micro-templated. This method transforms the necklace-like particulate microstructure of metal oxide aerogels (e.g., Al<sub>2</sub>O<sub>3</sub> Cr<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub>) into a polymer-like nanobelt structure. Remarkably, even after removing the polymer template through calcination at 600 °C, the nanobelt structure remains intact. These metal oxide nanobelt (MNB) aerogels exhibit exceptional compressibility while retaining their mesoporous structure. As a demonstration, the resulting Al-MNB aerogel can withstand compression up to 80% strain without fracturing while preserving its porous nanobelt structure and a high specific surface area of 228 m<sup>2</sup> g<sup>−1</sup> and a pore volume of 0.7 cm<sup>3</sup> g<sup>−1</sup> after heat treatment at 1300 °C. This work introduces an innovative strategy for creating a distinctive polymer-like nanobelt microstructure, paving the way for novel applications of metal oxide aerogels with unique structures and enhanced performance.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414592","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal oxide aerogels, inorganic cousins of the highly commercialized metalloid oxide silica aerogels, exhibit distinct properties specific to each type. Nevertheless, they share a common challenge with silica aerogels—brittleness and low mechanical strength due to their particulate necklace-like structure. In contrast, polymer aerogels often boast significantly enhanced mechanical properties thanks to their nanofibrillated networks. To enhance the mechanical properties of metal oxide aerogels, the metal oxide formation with a polymeric nanostructure is micro-templated. This method transforms the necklace-like particulate microstructure of metal oxide aerogels (e.g., Al2O3 Cr2O3, and Fe2O3) into a polymer-like nanobelt structure. Remarkably, even after removing the polymer template through calcination at 600 °C, the nanobelt structure remains intact. These metal oxide nanobelt (MNB) aerogels exhibit exceptional compressibility while retaining their mesoporous structure. As a demonstration, the resulting Al-MNB aerogel can withstand compression up to 80% strain without fracturing while preserving its porous nanobelt structure and a high specific surface area of 228 m2 g−1 and a pore volume of 0.7 cm3 g−1 after heat treatment at 1300 °C. This work introduces an innovative strategy for creating a distinctive polymer-like nanobelt microstructure, paving the way for novel applications of metal oxide aerogels with unique structures and enhanced performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
坚固且耐超高温的纳米氧化金属带气凝胶
金属氧化物气凝胶是高度商业化的金属氧化物二氧化硅气凝胶的无机表亲,每种气凝胶都具有不同的特性。不过,它们与二氧化硅气凝胶面临着一个共同的挑战--由于其微粒项链状结构而变得脆且机械强度低。相比之下,聚合物气凝胶由于具有纳米纤化网络,其机械性能通常会显著增强。为增强金属氧化物气凝胶的机械性能,可采用微模板技术将金属氧化物与聚合物纳米结构结合在一起。这种方法将金属氧化物气凝胶(如 Al2O3 Cr2O3 和 Fe2O3)的项链状颗粒微结构转变为聚合物状纳米带结构。值得注意的是,即使在 600 °C 煅烧去除聚合物模板后,纳米带结构仍然完好无损。这些金属氧化物纳米带(MNB)气凝胶在保持其介孔结构的同时,还表现出优异的可压缩性。结果表明,在 1300 ℃ 热处理后,生成的 Al-MNB 气凝胶可承受高达 80% 的压缩应变而不断裂,同时保留了多孔纳米带结构和 228 m2 g-1 的高比表面积以及 0.7 cm3 g-1 的孔体积。这项工作介绍了一种创造独特聚合物状纳米带微结构的创新策略,为具有独特结构和更高性能的金属氧化物气凝胶的新型应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Tailoring the Charge Transfer-Driven Oxidation in van der Waals Ferroelectric NbOI2 Through Hetero-Interface Engineering Highly Polarization-Sensitive Solar-Blind Ultraviolet Photodetection Based on 1D Rb2CuCl3 Microwires Promoting Layered Oxide Cathodes Based on Structural Reconstruction for Sodium-Ion Batteries: Reversible Phase Transition, Stable Interface Regulation, and Multifunctional Intergrowth Structure Investigation on the Necessity of Low Rates Activation toward Lithium-Sulfur Batteries Prefer-Oriented Ag2Se Crystal for High-Performance Thermoelectric Cooling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1