{"title":"Aluminum Fluorides as Noncovalent Lewis Acids in Proteins: The Case of Phosphoryl Transfer Enzymes.","authors":"Sergi Burguera, Lenin Vidal, Antonio Bauzá","doi":"10.1002/cplu.202400578","DOIUrl":null,"url":null,"abstract":"<p><p>The Protein Data Bank (PDB) was scrutinized for the presence of noncovalent O ⋅ ⋅ ⋅ Al Triel Bonding (TrB) interactions, involving protein residues (e. g. GLU and GLN), adenosine/guanine diphosphate moieties (ADP and GDP), water molecules and two aluminum fluorides (AlF<sub>3</sub> and AlF<sub>4</sub> <sup>-</sup>). The results were statistically analyzed, revealing a vast number of O ⋅ ⋅ ⋅ Al contacts in the active sites of phosphoryl transfer enzymes, with a marked directionality towards the Al σ-/π-hole. The physical nature of the TrBs studied herein was analyzed using Molecular Electrostatic Potential (MEP) maps, the Quantum Theory of Atoms in Molecules (QTAIM), the Non Covalent Interaction plot (NCIplot) visual index and Natural Bonding Orbital (NBO) studies. As far as our knowledge extends, it is the first time that O ⋅ ⋅ ⋅ Al TrBs are analyzed within a biological context, participating in protein trapping mechanisms related to phosphoryl transfer enzymes. Moreover, since they are involved in the stabilization of aluminum fluorides inside the protein's active site, we believe the results reported herein will be valuable for those scientists working in supramolecular chemistry, catalysis and rational drug design.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400578"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400578","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Protein Data Bank (PDB) was scrutinized for the presence of noncovalent O ⋅ ⋅ ⋅ Al Triel Bonding (TrB) interactions, involving protein residues (e. g. GLU and GLN), adenosine/guanine diphosphate moieties (ADP and GDP), water molecules and two aluminum fluorides (AlF3 and AlF4-). The results were statistically analyzed, revealing a vast number of O ⋅ ⋅ ⋅ Al contacts in the active sites of phosphoryl transfer enzymes, with a marked directionality towards the Al σ-/π-hole. The physical nature of the TrBs studied herein was analyzed using Molecular Electrostatic Potential (MEP) maps, the Quantum Theory of Atoms in Molecules (QTAIM), the Non Covalent Interaction plot (NCIplot) visual index and Natural Bonding Orbital (NBO) studies. As far as our knowledge extends, it is the first time that O ⋅ ⋅ ⋅ Al TrBs are analyzed within a biological context, participating in protein trapping mechanisms related to phosphoryl transfer enzymes. Moreover, since they are involved in the stabilization of aluminum fluorides inside the protein's active site, we believe the results reported herein will be valuable for those scientists working in supramolecular chemistry, catalysis and rational drug design.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.