Deciphering electrocatalytic hydrogen production in water through a bioinspired water-stable copper(II) complex adorned with (N2S2)-donor sites.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-10-04 DOI:10.1002/cssc.202401089
Bhaskar Biswas, Sangharaj Diyali, Subhajit Saha, Nilankar Diyali, Avantika Bhattacharjee, Abhishek Mallick, Suraj Kumar Agrawalla, Chandra Shekhar Purohit
{"title":"Deciphering electrocatalytic hydrogen production in water through a bioinspired water-stable copper(II) complex adorned with (N2S2)-donor sites.","authors":"Bhaskar Biswas, Sangharaj Diyali, Subhajit Saha, Nilankar Diyali, Avantika Bhattacharjee, Abhishek Mallick, Suraj Kumar Agrawalla, Chandra Shekhar Purohit","doi":"10.1002/cssc.202401089","DOIUrl":null,"url":null,"abstract":"<p><p>Electrocatalytic hydrogen production stands as a pivotal cornerstone in ushering the revolutionary era of the hydrogen economy. With a keen focus on emulating the significance of hydrogenase-like active sites in sustainable H2 generation, a meticulously designed and water-stable copper(II) complex, [Cl-Cu-LN2S2]ClO4, featuring the N,S-type ligand, LN2S2 (2,2'-((butane-2,3-diylbis(sulfanediyl))bis(methylene))dipyridine), has been crafted and assessed for its prowess in electrocatalytic H2 production in water, leveraging acetic acid as a proton source. The molecular catalyst, adopting a square pyramidal coordination geometry, undergoes -Cl substitution by H2O during electrochemical conditions yielding [H2O-Cu-LN2S2]2+ as the true catalyst, showcases outstanding activity in electrochemical proton reduction in acidic water, achieving an impressive rate of 241.75 s-1 for hydrogen generation. Controlled potential electrolysis at -1.2 V vs. Ag/AgCl for 1.6 h reveals a high turnover number of 73.06 with a commendable Faradic efficiency of 94.2%. A comprehensive analysis encompassing electrochemical, spectroscopic, and analytical methods reveals an insignificant degradation of the molecular catalyst. However, the post-CPE electrocatalyst, present in the solution domain, signifies the coveted stability and effective activity under the specified electrochemical conditions. The synergy of electrochemical, spectroscopic, and computational studies endorses the proton-electron coupling mediated catalytic pathways, affirming the viability of sustainable hydrogen production.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401089","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic hydrogen production stands as a pivotal cornerstone in ushering the revolutionary era of the hydrogen economy. With a keen focus on emulating the significance of hydrogenase-like active sites in sustainable H2 generation, a meticulously designed and water-stable copper(II) complex, [Cl-Cu-LN2S2]ClO4, featuring the N,S-type ligand, LN2S2 (2,2'-((butane-2,3-diylbis(sulfanediyl))bis(methylene))dipyridine), has been crafted and assessed for its prowess in electrocatalytic H2 production in water, leveraging acetic acid as a proton source. The molecular catalyst, adopting a square pyramidal coordination geometry, undergoes -Cl substitution by H2O during electrochemical conditions yielding [H2O-Cu-LN2S2]2+ as the true catalyst, showcases outstanding activity in electrochemical proton reduction in acidic water, achieving an impressive rate of 241.75 s-1 for hydrogen generation. Controlled potential electrolysis at -1.2 V vs. Ag/AgCl for 1.6 h reveals a high turnover number of 73.06 with a commendable Faradic efficiency of 94.2%. A comprehensive analysis encompassing electrochemical, spectroscopic, and analytical methods reveals an insignificant degradation of the molecular catalyst. However, the post-CPE electrocatalyst, present in the solution domain, signifies the coveted stability and effective activity under the specified electrochemical conditions. The synergy of electrochemical, spectroscopic, and computational studies endorses the proton-electron coupling mediated catalytic pathways, affirming the viability of sustainable hydrogen production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过缀有 (N2S2) 供体位点的生物启发水稳定铜 (II) 复合物,解密水中的电催化制氢。
电催化制氢是开创氢经济革命时代的重要基石。为了模仿类似氢化酶的活性位点在可持续制氢中的重要作用,我们精心设计了一种水稳定的铜(II)配合物 [Cl-Cu-LN2S2]ClO4 ,其特征是 N. S 型配体 LN2S2(2,2'-((丁烷-2-二烷基))、LN2S2 (2,2'-((butane-2,3-diylbis(sulfanediyl))bis(methylene))dipyridine)) 为特征的 N、S 型配体。该分子催化剂采用方形金字塔配位几何结构,在电化学条件下会被 H2O 取代 -Cl,生成真正的催化剂 [H2O-Cu-LN2S2]2+,在酸性水的电化学质子还原过程中表现出卓越的活性,制氢速率达到惊人的 241.75 s-1。在 -1.2 V 对 Ag/AgCl 条件下进行 1.6 小时的受控电势电解显示出 73.06 的高周转次数和 94.2% 的法拉第效率。包括电化学、光谱和分析方法在内的综合分析表明,分子催化剂的降解并不明显。然而,在特定电化学条件下,存在于溶液领域的后 CPE 电催化剂具有梦寐以求的稳定性和有效活性。电化学、光谱和计算研究的协同作用认可了质子-电子耦合介导的催化途径,肯定了可持续制氢的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Ionomer and Membrane Designs for Low-Temperature CO2 and CO Electrolysis. Deciphering electrocatalytic hydrogen production in water through a bioinspired water-stable copper(II) complex adorned with (N2S2)-donor sites. Mechanistic Study of the Electrochemical Reduction of CO2 in Aprotic Ionic Liquid in Air. More Efficient Chemical Recycling of Poly(ethylene terephthalate) by Intercepting Intermediates. Active Sites for CO2 Hydrogenation to Methanol: Mechanistic Insights and Reaction Control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1