Geanso M. de Moura, Mateus R. Lage, Adenilson Santos, Rodrigo Gester, Stanislav R. Stoyanov, Tarciso Andrade-Filho
{"title":"A DFT study of the effect of hydrostatic pressure on the structure and electronic properties of sarcosine crystal","authors":"Geanso M. de Moura, Mateus R. Lage, Adenilson Santos, Rodrigo Gester, Stanislav R. Stoyanov, Tarciso Andrade-Filho","doi":"10.1007/s00894-024-06110-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>We perform density functional theory calculations to study the dependence of the structural and electronic properties of the amino acid sarcosine crystal structure on hydrostatic pressure application. The results are analyzed and compared with the available experimental data. Our findings indicate that the crystal structure and properties of sarcosine calculated using the Grimme dispersion-corrected PBE functional (PBE-D3) best agree with the available experimental results under hydrostatic pressure of up to 3.7 GPa. Critical structural rearrangements, such as unit cell compression, head-to-tail compression, and molecular rotations, are investigated and elucidated in the context of experimental findings. Band gap energy tuning and density of state shifts indicative of band dispersion are presented concerning the structural changes arising from the elevated pressure. The calculated properties indicate that sarcosine holds great promise for application in electronic devices that involve pressure-induced structural changes.</p><h3>Methods</h3><p>Three widely used generalized gradient approximation functionals—PBE, PBEsol, and revPBE—are employed with Grimme’s D3 dispersion correction. The non-local van der Waals density functional vdW-DF is also evaluated. The calculations are performed using the projector-augmented wave method in the Quantum Espresso software suite. The geometry optimization results are visualized using VMD. The Multiwfn and NCIPlot programs are used for wavefunction and intermolecular interaction analyses.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 11","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452461/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06110-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
We perform density functional theory calculations to study the dependence of the structural and electronic properties of the amino acid sarcosine crystal structure on hydrostatic pressure application. The results are analyzed and compared with the available experimental data. Our findings indicate that the crystal structure and properties of sarcosine calculated using the Grimme dispersion-corrected PBE functional (PBE-D3) best agree with the available experimental results under hydrostatic pressure of up to 3.7 GPa. Critical structural rearrangements, such as unit cell compression, head-to-tail compression, and molecular rotations, are investigated and elucidated in the context of experimental findings. Band gap energy tuning and density of state shifts indicative of band dispersion are presented concerning the structural changes arising from the elevated pressure. The calculated properties indicate that sarcosine holds great promise for application in electronic devices that involve pressure-induced structural changes.
Methods
Three widely used generalized gradient approximation functionals—PBE, PBEsol, and revPBE—are employed with Grimme’s D3 dispersion correction. The non-local van der Waals density functional vdW-DF is also evaluated. The calculations are performed using the projector-augmented wave method in the Quantum Espresso software suite. The geometry optimization results are visualized using VMD. The Multiwfn and NCIPlot programs are used for wavefunction and intermolecular interaction analyses.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.