Modeling recent positive selection using identity-by-descent segments.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY American journal of human genetics Pub Date : 2024-11-07 Epub Date: 2024-10-02 DOI:10.1016/j.ajhg.2024.08.023
Seth D Temple, Ryan K Waples, Sharon R Browning
{"title":"Modeling recent positive selection using identity-by-descent segments.","authors":"Seth D Temple, Ryan K Waples, Sharon R Browning","doi":"10.1016/j.ajhg.2024.08.023","DOIUrl":null,"url":null,"abstract":"<p><p>Recent positive selection can result in an excess of long identity-by-descent (IBD) haplotype segments overlapping a locus. The statistical methods that we propose here address three major objectives in studying selective sweeps: scanning for regions of interest, identifying possible sweeping alleles, and estimating a selection coefficient s. First, we implement a selection scan to locate regions with excess IBD rates. Second, we estimate the allele frequency and location of an unknown sweeping allele by aggregating over variants that are more abundant in an inferred outgroup with excess IBD rate versus the rest of the sample. Third, we propose an estimator for the selection coefficient and quantify uncertainty using the parametric bootstrap. Comparing against state-of-the-art methods in extensive simulations, we show that our methods are more precise at estimating s when s≥0.015. We also show that our 95% confidence intervals contain s in nearly 95% of our simulations. We apply these methods to study positive selection in European ancestry samples from the Trans-Omics for Precision Medicine project. We analyze eight loci where IBD rates are more than four standard deviations above the genome-wide median, including LCT where the maximum IBD rate is 35 standard deviations above the genome-wide median. Overall, we present robust and accurate approaches to study recent adaptive evolution without knowing the identity of the causal allele or using time series data.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2510-2529"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2024.08.023","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent positive selection can result in an excess of long identity-by-descent (IBD) haplotype segments overlapping a locus. The statistical methods that we propose here address three major objectives in studying selective sweeps: scanning for regions of interest, identifying possible sweeping alleles, and estimating a selection coefficient s. First, we implement a selection scan to locate regions with excess IBD rates. Second, we estimate the allele frequency and location of an unknown sweeping allele by aggregating over variants that are more abundant in an inferred outgroup with excess IBD rate versus the rest of the sample. Third, we propose an estimator for the selection coefficient and quantify uncertainty using the parametric bootstrap. Comparing against state-of-the-art methods in extensive simulations, we show that our methods are more precise at estimating s when s≥0.015. We also show that our 95% confidence intervals contain s in nearly 95% of our simulations. We apply these methods to study positive selection in European ancestry samples from the Trans-Omics for Precision Medicine project. We analyze eight loci where IBD rates are more than four standard deviations above the genome-wide median, including LCT where the maximum IBD rate is 35 standard deviations above the genome-wide median. Overall, we present robust and accurate approaches to study recent adaptive evolution without knowing the identity of the causal allele or using time series data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用同源后裔片段模拟近期的正向选择。
最近的正向选择会导致过多的长世系单倍型片段重叠在一个基因座上。我们在此提出的统计方法解决了研究选择性横扫的三个主要目标:扫描感兴趣的区域、识别可能的横扫等位基因以及估计选择系数 s。其次,我们通过聚合在推断出的具有超常 IBD 率的外群中相对于其他样本中更为丰富的变体,来估计未知横扫等位基因的等位基因频率和位置。第三,我们提出了一种选择系数估计方法,并使用参数自举法量化了不确定性。在大量模拟中,我们与最先进的方法进行了比较,结果表明当 s≥0.015 时,我们的方法能更精确地估计 s。我们还表明,在近 95% 的模拟中,我们的 95% 置信区间包含 s。我们将这些方法应用于研究 "跨欧米茄精准医学 "项目中欧洲血统样本的正选择。我们分析了 IBD 率高于全基因组中位数四个标准差以上的八个位点,其中包括最大 IBD 率高于全基因组中位数 35 个标准差的 LCT。总之,我们提出了稳健而准确的方法,在不知道因果等位基因身份或使用时间序列数据的情况下研究近期的适应性进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
期刊最新文献
The PRIMED Consortium: Reducing disparities in polygenic risk assessment. Comparative analysis of predicted DNA secondary structures infers complex human centromere topology. Toward trustable use of machine learning models of variant effects in the clinic. Allele frequency impacts the cross-ancestry portability of gene expression prediction in lymphoblastoid cell lines. Inherited infertility: Mapping loci associated with impaired female reproduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1