首页 > 最新文献

American journal of human genetics最新文献

英文 中文
Distinct explanations underlie gene-environment interactions in the UK Biobank.
IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-02-11 DOI: 10.1016/j.ajhg.2025.01.014
Arun Durvasula, Alkes L Price

The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and environmental (E) variable. First, we detect locus-specific GxE interaction by testing for genetic correlation (rg) < 1 across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRSs) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP heritability across E bins. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average n = 325,000) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with rg significantly <1 (false discovery rate < 5%); 28 trait-E pairs with significant PRSxE and significant SNP heritability differences across E bins; and 15 trait-E pairs with significant PRSxE but no SNP heritability differences across E bins. Across the three scenarios, eight of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of these scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait variance.

{"title":"Distinct explanations underlie gene-environment interactions in the UK Biobank.","authors":"Arun Durvasula, Alkes L Price","doi":"10.1016/j.ajhg.2025.01.014","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.01.014","url":null,"abstract":"<p><p>The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and environmental (E) variable. First, we detect locus-specific GxE interaction by testing for genetic correlation (r<sub>g</sub>) < 1 across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRSs) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP heritability across E bins. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average n = 325,000) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with r<sub>g</sub> significantly <1 (false discovery rate < 5%); 28 trait-E pairs with significant PRSxE and significant SNP heritability differences across E bins; and 15 trait-E pairs with significant PRSxE but no SNP heritability differences across E bins. Across the three scenarios, eight of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of these scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait variance.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contribution of autosomal rare and de novo variants to sex differences in autism.
IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-02-11 DOI: 10.1016/j.ajhg.2025.01.016
Mahmoud Koko, F Kyle Satterstrom, Varun Warrier, Hilary Martin

Autism is four times more prevalent in males than females. To study whether this reflects a difference in genetic predisposition attributed to autosomal rare variants, we evaluated sex differences in effect size of damaging protein-truncating and missense variants on autism predisposition in 47,061 autistic individuals using a liability model with differing thresholds. Given the sex differences in the rates of cognitive impairment among autistic individuals, we also compared effect sizes of rare variants between individuals with and without cognitive impairment or motor delay. Although these variants mediated different likelihoods of autism with versus without cognitive or motor difficulties, their effect sizes on the liability scale did not differ significantly by sex exome wide or in genes sex-differentially expressed in the cortex. De novo mutations were enriched in genes with male-biased expression in the adult cortex, but these genes did not show a significant sex difference on the liability scale, nor did the liability conferred by these genes differ significantly from other genes with similar loss-of-function intolerance and sex-averaged cortical expression. Exome-wide female bias in de novo protein-truncating mutation rates on the observed scale was driven by high-confidence and syndromic autism-predisposition genes. In summary, autosomal rare and damaging coding variants confer similar liability for autism in females and males.

{"title":"Contribution of autosomal rare and de novo variants to sex differences in autism.","authors":"Mahmoud Koko, F Kyle Satterstrom, Varun Warrier, Hilary Martin","doi":"10.1016/j.ajhg.2025.01.016","DOIUrl":"10.1016/j.ajhg.2025.01.016","url":null,"abstract":"<p><p>Autism is four times more prevalent in males than females. To study whether this reflects a difference in genetic predisposition attributed to autosomal rare variants, we evaluated sex differences in effect size of damaging protein-truncating and missense variants on autism predisposition in 47,061 autistic individuals using a liability model with differing thresholds. Given the sex differences in the rates of cognitive impairment among autistic individuals, we also compared effect sizes of rare variants between individuals with and without cognitive impairment or motor delay. Although these variants mediated different likelihoods of autism with versus without cognitive or motor difficulties, their effect sizes on the liability scale did not differ significantly by sex exome wide or in genes sex-differentially expressed in the cortex. De novo mutations were enriched in genes with male-biased expression in the adult cortex, but these genes did not show a significant sex difference on the liability scale, nor did the liability conferred by these genes differ significantly from other genes with similar loss-of-function intolerance and sex-averaged cortical expression. Exome-wide female bias in de novo protein-truncating mutation rates on the observed scale was driven by high-confidence and syndromic autism-predisposition genes. In summary, autosomal rare and damaging coding variants confer similar liability for autism in females and males.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An evolving understanding of multiple causal variants underlying genetic association signals.
IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-02-08 DOI: 10.1016/j.ajhg.2025.01.018
Erping Long, Jacob Williams, Haoyu Zhang, Jiyeon Choi

Understanding how genetic variation contributes to phenotypic variation is a fundamental question in genetics. Genome-wide association studies (GWASs) have discovered numerous genetic associations with various human phenotypes, most of which contain co-inherited variants in strong linkage disequilibrium (LD) with indistinguishable statistical significance. The experimental and analytical difficulty in identifying the "causal variant" among the co-inherited variants has traditionally led mechanistic studies to focus on relatively simple loci, where a single functional variant is presumed to explain most of the association signal and affect a target gene. The notion that a single causal variant is responsible for an association signal, while other variants in LD are merely correlated, has often been assumed in functional studies. However, emerging evidence powered by high-throughput experimental tools and context-specific functional databases argues that even a single independent signal may involve multiple functional variants in strong LD, each contributing to the observed genetic association. In this perspective, we articulate this evolving understanding of causal variants through examples from both traditional locus-by-locus approaches and more recent high-throughput functional studies. We then discuss the implications and prospects of this notion in understanding the genetic architecture of complex traits and interpreting the variant-level causality in GWAS follow-up studies.

{"title":"An evolving understanding of multiple causal variants underlying genetic association signals.","authors":"Erping Long, Jacob Williams, Haoyu Zhang, Jiyeon Choi","doi":"10.1016/j.ajhg.2025.01.018","DOIUrl":"https://doi.org/10.1016/j.ajhg.2025.01.018","url":null,"abstract":"<p><p>Understanding how genetic variation contributes to phenotypic variation is a fundamental question in genetics. Genome-wide association studies (GWASs) have discovered numerous genetic associations with various human phenotypes, most of which contain co-inherited variants in strong linkage disequilibrium (LD) with indistinguishable statistical significance. The experimental and analytical difficulty in identifying the \"causal variant\" among the co-inherited variants has traditionally led mechanistic studies to focus on relatively simple loci, where a single functional variant is presumed to explain most of the association signal and affect a target gene. The notion that a single causal variant is responsible for an association signal, while other variants in LD are merely correlated, has often been assumed in functional studies. However, emerging evidence powered by high-throughput experimental tools and context-specific functional databases argues that even a single independent signal may involve multiple functional variants in strong LD, each contributing to the observed genetic association. In this perspective, we articulate this evolving understanding of causal variants through examples from both traditional locus-by-locus approaches and more recent high-throughput functional studies. We then discuss the implications and prospects of this notion in understanding the genetic architecture of complex traits and interpreting the variant-level causality in GWAS follow-up studies.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143447816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isogenic hiPSC models of Turner syndrome development reveal shared roles of inactive X and Y in the human cranial neural crest network.
IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-02-07 DOI: 10.1016/j.ajhg.2025.01.013
Darcy T Ahern, Prakhar Bansal, Isaac V Faustino, Owen M Chambers, Erin C Banda, Heather R Glatt-Deeley, Rachael E Massey, Yuvabharath Kondaveeti, Stefan F Pinter

Viable human aneuploidy can be challenging to model in rodents due to syntenic boundaries or primate-specific biology. Human monosomy-X (45,X) causes Turner syndrome (TS), altering craniofacial, skeletal, endocrine, and cardiovascular development, which in contrast remain unaffected in X-monosomic mice. To learn how monosomy-X may impact embryonic development, we turned to 45,X and isogenic euploid human induced pluripotent stem cells (hiPSCs) from male and female mosaic donors. Because the neural crest (NC) is hypothesized to give rise to craniofacial and cardiovascular changes in TS, we assessed differential expression of hiPSC-derived anterior NC cells (NCCs). Across three independent isogenic panels, 45,X NCCs show impaired acquisition of PAX7+SOX10+ markers and disrupted expression of other NCC-specific genes relative to isogenic euploid controls. Additionally, 45,X NCCs increase cholesterol biosynthesis genes while reducing transcripts with 5' terminal oligopyrimidine (TOP) motifs, including those of ribosomal and nuclear-encoded mitochondrial proteins. Such metabolic pathways are also over-represented in weighted co-expression modules that are preserved in monogenic neurocristopathy and reflect 28% of all TS-associated terms of the human phenotype ontology. We demonstrate that 45,X NCCs reduce protein synthesis despite activation of mammalian target of rapamycin (mTOR) but are partially rescued by mild mTOR suppression. Our analysis identifies specific sex-linked genes that are expressed from two copies in euploid males and females alike and qualify as candidate haploinsufficient drivers of TS phenotypes in NC-derived lineages. This study demonstrates that isogenic hiPSC-derived NCC panels representing monosomy-X can serve as powerful models of early NC development in TS and inform new hypotheses toward its etiology.

{"title":"Isogenic hiPSC models of Turner syndrome development reveal shared roles of inactive X and Y in the human cranial neural crest network.","authors":"Darcy T Ahern, Prakhar Bansal, Isaac V Faustino, Owen M Chambers, Erin C Banda, Heather R Glatt-Deeley, Rachael E Massey, Yuvabharath Kondaveeti, Stefan F Pinter","doi":"10.1016/j.ajhg.2025.01.013","DOIUrl":"10.1016/j.ajhg.2025.01.013","url":null,"abstract":"<p><p>Viable human aneuploidy can be challenging to model in rodents due to syntenic boundaries or primate-specific biology. Human monosomy-X (45,X) causes Turner syndrome (TS), altering craniofacial, skeletal, endocrine, and cardiovascular development, which in contrast remain unaffected in X-monosomic mice. To learn how monosomy-X may impact embryonic development, we turned to 45,X and isogenic euploid human induced pluripotent stem cells (hiPSCs) from male and female mosaic donors. Because the neural crest (NC) is hypothesized to give rise to craniofacial and cardiovascular changes in TS, we assessed differential expression of hiPSC-derived anterior NC cells (NCCs). Across three independent isogenic panels, 45,X NCCs show impaired acquisition of PAX7<sup>+</sup>SOX10<sup>+</sup> markers and disrupted expression of other NCC-specific genes relative to isogenic euploid controls. Additionally, 45,X NCCs increase cholesterol biosynthesis genes while reducing transcripts with 5' terminal oligopyrimidine (TOP) motifs, including those of ribosomal and nuclear-encoded mitochondrial proteins. Such metabolic pathways are also over-represented in weighted co-expression modules that are preserved in monogenic neurocristopathy and reflect 28% of all TS-associated terms of the human phenotype ontology. We demonstrate that 45,X NCCs reduce protein synthesis despite activation of mammalian target of rapamycin (mTOR) but are partially rescued by mild mTOR suppression. Our analysis identifies specific sex-linked genes that are expressed from two copies in euploid males and females alike and qualify as candidate haploinsufficient drivers of TS phenotypes in NC-derived lineages. This study demonstrates that isogenic hiPSC-derived NCC panels representing monosomy-X can serve as powerful models of early NC development in TS and inform new hypotheses toward its etiology.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing features affecting local ancestry inference performance in admixed populations. 在混合种群中影响本地祖先推断性能的特征。
IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-02-06 Epub Date: 2025-01-02 DOI: 10.1016/j.ajhg.2024.12.005
Jessica Honorato-Mauer, Nirav N Shah, Adam X Maihofer, Clement C Zai, Sintia Belangero, Caroline M Nievergelt, Marcos Santoro, Elizabeth G Atkinson

In recent years, significant efforts have been made to improve methods for genomic studies of admixed populations using local ancestry inference (LAI). Accurate LAI is crucial to ensure that downstream analyses accurately reflect the genetic ancestry of research participants. Here, we test analytic strategies for LAI to provide guidelines for optimal accuracy, focusing on admixed populations reflective of Latin America's primary continental ancestries-African (AFR), Amerindigenous (AMR), and European (EUR). Simulating linkage-disequilibrium-informed admixed haplotypes under a variety of 2- and 3-way admixture models, we implemented a standard LAI pipeline, testing the impact of reference panel composition, DNA data type, demography, and software parameters to quantify ancestry-specific LAI accuracy. We observe that across all models, AMR tracts have notably reduced LAI accuracy as compared to EUR and AFR tracts, with true positive rate means for AMR ranging from 88% to 94%, EUR from 96% to 99%, and AFR from 98% to 99%. When LAI miscalls occurred, they most frequently erroneously called EUR ancestry in true AMR sites. Concerning reference panel curation, we find that using a reference panel well matched to the target population, even with a smaller sample size, was accurate and the most computationally efficient. Imputation did not harm LAI performance in our tests; rather, we observed that higher variant density improved accuracy. While directly responsive to admixed Latin American cohort compositions, these trends are broadly useful for informing best practices for LAI across admixed populations. Our findings reinforce the need for the inclusion of more underrepresented populations in sequencing efforts to improve reference panels.

近年来,利用本地祖先推断(LAI)对杂交群体的基因组研究方法进行了大量的改进。准确的LAI对于确保下游分析准确反映研究参与者的遗传血统至关重要。在这里,我们测试了LAI的分析策略,以提供最佳准确性的指导方针,重点关注反映拉丁美洲主要大陆祖先的混合人群-非洲人(AFR),美洲原住民(AMR)和欧洲人(EUR)。模拟各种2向和3向混合模型下的连锁不平衡信息混合单倍型,我们实施了一个标准的LAI管道,测试参考面板组成、DNA数据类型、人口统计学和软件参数的影响,以量化祖先特异性LAI准确性。我们观察到,在所有模型中,与EUR和AFR束相比,AMR束的LAI精度明显降低,AMR的真阳性率平均值在88%至94%之间,EUR在96%至99%之间,AFR在98%至99%之间。当LAI出现错误时,他们最常见的是在真正的AMR位点错误地称为EUR祖先。关于参考小组管理,我们发现使用与目标人群匹配良好的参考小组,即使样本量较小,也是准确且最具计算效率的。在我们的测试中,归因没有损害LAI的性能;相反,我们观察到更高的变体密度提高了准确性。虽然这些趋势直接反映了拉丁美洲混合人群的组成,但它们对于跨混合人群的LAI最佳实践具有广泛的作用。我们的研究结果强调了在测序工作中纳入更多代表性不足的人群以改善参考小组的必要性。
{"title":"Characterizing features affecting local ancestry inference performance in admixed populations.","authors":"Jessica Honorato-Mauer, Nirav N Shah, Adam X Maihofer, Clement C Zai, Sintia Belangero, Caroline M Nievergelt, Marcos Santoro, Elizabeth G Atkinson","doi":"10.1016/j.ajhg.2024.12.005","DOIUrl":"10.1016/j.ajhg.2024.12.005","url":null,"abstract":"<p><p>In recent years, significant efforts have been made to improve methods for genomic studies of admixed populations using local ancestry inference (LAI). Accurate LAI is crucial to ensure that downstream analyses accurately reflect the genetic ancestry of research participants. Here, we test analytic strategies for LAI to provide guidelines for optimal accuracy, focusing on admixed populations reflective of Latin America's primary continental ancestries-African (AFR), Amerindigenous (AMR), and European (EUR). Simulating linkage-disequilibrium-informed admixed haplotypes under a variety of 2- and 3-way admixture models, we implemented a standard LAI pipeline, testing the impact of reference panel composition, DNA data type, demography, and software parameters to quantify ancestry-specific LAI accuracy. We observe that across all models, AMR tracts have notably reduced LAI accuracy as compared to EUR and AFR tracts, with true positive rate means for AMR ranging from 88% to 94%, EUR from 96% to 99%, and AFR from 98% to 99%. When LAI miscalls occurred, they most frequently erroneously called EUR ancestry in true AMR sites. Concerning reference panel curation, we find that using a reference panel well matched to the target population, even with a smaller sample size, was accurate and the most computationally efficient. Imputation did not harm LAI performance in our tests; rather, we observed that higher variant density improved accuracy. While directly responsive to admixed Latin American cohort compositions, these trends are broadly useful for informing best practices for LAI across admixed populations. Our findings reinforce the need for the inclusion of more underrepresented populations in sequencing efforts to improve reference panels.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"224-234"},"PeriodicalIF":8.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A unified framework for cell-type-specific eQTL prioritization by integrating bulk and scRNA-seq data. 通过整合大量和scRNA-seq数据,为细胞类型特异性eQTL优先排序提供一个统一的框架。
IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-02-06 Epub Date: 2025-01-16 DOI: 10.1016/j.ajhg.2024.12.018
Xinyi Yu, Xianghong Hu, Xiaomeng Wan, Zhiyong Zhang, Xiang Wan, Mingxuan Cai, Tianwei Yu, Jiashun Xiao

Genome-wide association studies (GWASs) have identified numerous genetic variants associated with complex traits, yet the biological interpretation remains challenging, especially for variants in non-coding regions. Expression quantitative trait locus (eQTL) studies have linked these variations to gene expression, aiding in identifying genes involved in disease mechanisms. Traditional eQTL analyses using bulk RNA sequencing (bulk RNA-seq) provide tissue-level insights but suffer from signal loss and distortion due to unaddressed cellular heterogeneity. Recently, single-cell RNA-seq (scRNA-seq) has provided higher resolution, enabling cell-type-specific eQTL (ct-eQTL) analyses. However, these studies are limited by their smaller sample sizes and technical constraints. In this paper, we present a statistical framework, IBSEP, which integrates bulk RNA-seq and scRNA-seq data for enhanced ct-eQTL prioritization. Our method employs a hierarchical linear model to combine summary statistics from both data types, overcoming the limitations while leveraging the advantages associated with each technique. Through extensive simulations and real data analyses, including peripheral blood mononuclear cells and brain cortex datasets, IBSEP demonstrated superior performance in identifying ct-eQTLs compared to existing methods. Our approach unveils transcriptional regulatory mechanisms specific to cell types, offering deeper insights into the genetic basis of complex diseases at a cellular resolution.

全基因组关联研究(GWASs)已经确定了许多与复杂性状相关的遗传变异,但生物学解释仍然具有挑战性,特别是对非编码区域的变异。表达数量性状位点(eQTL)研究将这些变异与基因表达联系起来,有助于识别与疾病机制有关的基因。使用散装RNA测序(散装RNA-seq)的传统eQTL分析提供了组织水平的见解,但由于未处理的细胞异质性而遭受信号丢失和失真。最近,单细胞RNA-seq (scRNA-seq)提供了更高的分辨率,使细胞类型特异性eQTL (ct-eQTL)分析成为可能。然而,这些研究受到样本量较小和技术限制的限制。在本文中,我们提出了一个统计框架IBSEP,它集成了大量RNA-seq和scRNA-seq数据,以增强ct-eQTL的优先级。我们的方法使用层次线性模型来组合来自两种数据类型的汇总统计,克服了局限性,同时利用了与每种技术相关的优势。通过广泛的模拟和真实数据分析,包括外周血单个核细胞和大脑皮层数据集,与现有方法相比,IBSEP在识别ct- eqtl方面表现出优越的性能。我们的方法揭示了特定于细胞类型的转录调控机制,在细胞分辨率上为复杂疾病的遗传基础提供了更深入的见解。
{"title":"A unified framework for cell-type-specific eQTL prioritization by integrating bulk and scRNA-seq data.","authors":"Xinyi Yu, Xianghong Hu, Xiaomeng Wan, Zhiyong Zhang, Xiang Wan, Mingxuan Cai, Tianwei Yu, Jiashun Xiao","doi":"10.1016/j.ajhg.2024.12.018","DOIUrl":"10.1016/j.ajhg.2024.12.018","url":null,"abstract":"<p><p>Genome-wide association studies (GWASs) have identified numerous genetic variants associated with complex traits, yet the biological interpretation remains challenging, especially for variants in non-coding regions. Expression quantitative trait locus (eQTL) studies have linked these variations to gene expression, aiding in identifying genes involved in disease mechanisms. Traditional eQTL analyses using bulk RNA sequencing (bulk RNA-seq) provide tissue-level insights but suffer from signal loss and distortion due to unaddressed cellular heterogeneity. Recently, single-cell RNA-seq (scRNA-seq) has provided higher resolution, enabling cell-type-specific eQTL (ct-eQTL) analyses. However, these studies are limited by their smaller sample sizes and technical constraints. In this paper, we present a statistical framework, IBSEP, which integrates bulk RNA-seq and scRNA-seq data for enhanced ct-eQTL prioritization. Our method employs a hierarchical linear model to combine summary statistics from both data types, overcoming the limitations while leveraging the advantages associated with each technique. Through extensive simulations and real data analyses, including peripheral blood mononuclear cells and brain cortex datasets, IBSEP demonstrated superior performance in identifying ct-eQTLs compared to existing methods. Our approach unveils transcriptional regulatory mechanisms specific to cell types, offering deeper insights into the genetic basis of complex diseases at a cellular resolution.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"332-352"},"PeriodicalIF":8.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders. dna结合亲和力和特异性决定了bcl11b相关疾病的表型多样性。
IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-02-06 Epub Date: 2025-01-10 DOI: 10.1016/j.ajhg.2024.12.012
Ivana Lessel, Anja Baresic, Ivan K Chinn, Jonathan May, Anu Goenka, Kate E Chandler, Jennifer E Posey, Alexandra Afenjar, Luisa Averdunk, Maria Francesca Bedeschi, Thomas Besnard, Rae Brager, Lauren Brick, Melanie Brugger, Theresa Brunet, Susan Byrne, Oscar de la Calle-Martín, Valeria Capra, Paul Cardenas, Céline Chappé, Hey J Chong, Benjamin Cogne, Erin Conboy, Heidi Cope, Thomas Courtin, Wallid Deb, Robertino Dilena, Christèle Dubourg, Magdeldin Elgizouli, Erica Fernandes, Kristi K Fitzgerald, Silvana Gangi, Jaya K George-Abraham, Muge Gucsavas-Calikoglu, Tobias B Haack, Medard Hadonou, Britta Hanker, Irina Hüning, Maria Iascone, Bertrand Isidor, Irma Järvelä, Jay J Jin, Alexander A L Jorge, Dragana Josifova, Ruta Kalinauskiene, Erik-Jan Kamsteeg, Boris Keren, Elena Kessler, Heike Kölbel, Mariya Kozenko, Christian Kubisch, Alma Kuechler, Suzanne M Leal, Juha Leppälä, Sharon M Luu, Gholson J Lyon, Suneeta Madan-Khetarpal, Margherita Mancardi, Elaine Marchi, Lakshmi Mehta, Beatriz Menendez, Chantal F Morel, Sue Moyer Harasink, Dayna-Lynn Nevay, Vincenzo Nigro, Sylvie Odent, Renske Oegema, John Pappas, Matthew T Pastore, Yezmin Perilla-Young, Konrad Platzer, Nina Powell-Hamilton, Rachel Rabin, Aisha Rekab, Raissa C Rezende, Leema Robert, Ferruccio Romano, Marcello Scala, Karin Poths, Isabelle Schrauwen, Jessica Sebastian, John Short, Richard Sidlow, Jennifer Sullivan, Katalin Szakszon, Queenie K G Tan, Matias Wagner, Dagmar Wieczorek, Bo Yuan, Nicole Maeding, Dirk Strunk, Amber Begtrup, Siddharth Banka, James R Lupski, Eva Tolosa, Davor Lessel

BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive. To dissect these, we performed genotype-phenotype correlations of 92 affected individuals harboring a pathogenic or likely pathogenic BCL11B variant, followed by immune phenotyping, analysis of chromatin immunoprecipitation DNA-sequencing data, dual-luciferase reporter assays, and molecular modeling. These integrative analyses enabled us to define three clinical subtypes of BCL11B-related disorders. It is likely that gene-disruptive BCL11B variants and missense variants affecting zinc-binding cysteine and histidine residues cause mild to moderate neurodevelopmental delay with increased propensity for behavioral and dental anomalies, allergies and asthma, and reduced type 2 innate lymphoid cells. Missense variants within C2H2-ZnF DNA-contacting α helices cause highly variable clinical presentations ranging from multisystem anomalies with demise in the first years of life to late-onset, hyperkinetic movement disorder with poor fine motor skills. Those not in direct DNA contact cause a milder phenotype through reduced, target-specific transcriptional activity. However, missense variants affecting C2H2-ZnFs, DNA binding, and "specificity residues" impair BCL11B transcriptional activity in a target-specific, dominant-negative manner along with aberrant regulation of alternative DNA targets, resulting in more severe and unpredictable clinical outcomes. Taken together, we suggest that the phenotypic severity and variability is largely dependent on the DNA-binding affinity and specificity of altered BCL11B proteins.

BCL11B是一种含C2H2-ZnF结构域的dna结合转录因子,在多种器官和组织(主要是免疫和神经系统)的发育中发挥重要作用。BCL11B种系变异与多种发育综合征有关。然而,基因型-表型相关性以及所选变异的病理生理机制大多仍然难以捉摸。为了剖析这些问题,我们对92名携带致病性或可能致病性BCL11B变异的受影响个体进行了基因型-表型相关性分析,随后进行了免疫表型分析、染色质免疫沉淀dna测序数据分析、双荧光素酶报告基因分析和分子建模。这些综合分析使我们能够确定bcl11b相关疾病的三种临床亚型。基因破坏的BCL11B变异和影响锌结合半胱氨酸和组氨酸残基的错义变异可能导致轻度至中度神经发育迟缓,并增加行为和牙齿异常、过敏和哮喘的倾向,以及2型先天淋巴样细胞的减少。C2H2-ZnF dna接触α螺旋内的错义变异引起高度不同的临床表现,从多系统异常到生命最初几年的死亡,到迟发性的多动运动障碍和精细运动技能差。那些没有直接DNA接触的基因通过降低的靶向特异性转录活性导致较温和的表型。然而,影响C2H2-ZnFs、DNA结合和“特异性残基”的错义变异体以靶向性、显性阴性的方式损害BCL11B的转录活性,同时对替代DNA靶标进行异常调节,导致更严重和不可预测的临床结果。综上所述,我们认为表型的严重性和可变性在很大程度上取决于改变的BCL11B蛋白的dna结合亲和力和特异性。
{"title":"DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders.","authors":"Ivana Lessel, Anja Baresic, Ivan K Chinn, Jonathan May, Anu Goenka, Kate E Chandler, Jennifer E Posey, Alexandra Afenjar, Luisa Averdunk, Maria Francesca Bedeschi, Thomas Besnard, Rae Brager, Lauren Brick, Melanie Brugger, Theresa Brunet, Susan Byrne, Oscar de la Calle-Martín, Valeria Capra, Paul Cardenas, Céline Chappé, Hey J Chong, Benjamin Cogne, Erin Conboy, Heidi Cope, Thomas Courtin, Wallid Deb, Robertino Dilena, Christèle Dubourg, Magdeldin Elgizouli, Erica Fernandes, Kristi K Fitzgerald, Silvana Gangi, Jaya K George-Abraham, Muge Gucsavas-Calikoglu, Tobias B Haack, Medard Hadonou, Britta Hanker, Irina Hüning, Maria Iascone, Bertrand Isidor, Irma Järvelä, Jay J Jin, Alexander A L Jorge, Dragana Josifova, Ruta Kalinauskiene, Erik-Jan Kamsteeg, Boris Keren, Elena Kessler, Heike Kölbel, Mariya Kozenko, Christian Kubisch, Alma Kuechler, Suzanne M Leal, Juha Leppälä, Sharon M Luu, Gholson J Lyon, Suneeta Madan-Khetarpal, Margherita Mancardi, Elaine Marchi, Lakshmi Mehta, Beatriz Menendez, Chantal F Morel, Sue Moyer Harasink, Dayna-Lynn Nevay, Vincenzo Nigro, Sylvie Odent, Renske Oegema, John Pappas, Matthew T Pastore, Yezmin Perilla-Young, Konrad Platzer, Nina Powell-Hamilton, Rachel Rabin, Aisha Rekab, Raissa C Rezende, Leema Robert, Ferruccio Romano, Marcello Scala, Karin Poths, Isabelle Schrauwen, Jessica Sebastian, John Short, Richard Sidlow, Jennifer Sullivan, Katalin Szakszon, Queenie K G Tan, Matias Wagner, Dagmar Wieczorek, Bo Yuan, Nicole Maeding, Dirk Strunk, Amber Begtrup, Siddharth Banka, James R Lupski, Eva Tolosa, Davor Lessel","doi":"10.1016/j.ajhg.2024.12.012","DOIUrl":"10.1016/j.ajhg.2024.12.012","url":null,"abstract":"<p><p>BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive. To dissect these, we performed genotype-phenotype correlations of 92 affected individuals harboring a pathogenic or likely pathogenic BCL11B variant, followed by immune phenotyping, analysis of chromatin immunoprecipitation DNA-sequencing data, dual-luciferase reporter assays, and molecular modeling. These integrative analyses enabled us to define three clinical subtypes of BCL11B-related disorders. It is likely that gene-disruptive BCL11B variants and missense variants affecting zinc-binding cysteine and histidine residues cause mild to moderate neurodevelopmental delay with increased propensity for behavioral and dental anomalies, allergies and asthma, and reduced type 2 innate lymphoid cells. Missense variants within C2H2-ZnF DNA-contacting α helices cause highly variable clinical presentations ranging from multisystem anomalies with demise in the first years of life to late-onset, hyperkinetic movement disorder with poor fine motor skills. Those not in direct DNA contact cause a milder phenotype through reduced, target-specific transcriptional activity. However, missense variants affecting C2H2-ZnFs, DNA binding, and \"specificity residues\" impair BCL11B transcriptional activity in a target-specific, dominant-negative manner along with aberrant regulation of alternative DNA targets, resulting in more severe and unpredictable clinical outcomes. Taken together, we suggest that the phenotypic severity and variability is largely dependent on the DNA-binding affinity and specificity of altered BCL11B proteins.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"394-413"},"PeriodicalIF":8.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing long-read nanopore genome assembly and accurate variant calling for rare disease detection. 推进用于罕见病检测的长线程纳米孔基因组组装和准确的变异调用。
IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-02-06 Epub Date: 2025-01-24 DOI: 10.1016/j.ajhg.2025.01.002
Shloka Negi, Sarah L Stenton, Seth I Berger, Paolo Canigiula, Brandy McNulty, Ivo Violich, Joshua Gardner, Todd Hillaker, Sara M O'Rourke, Melanie C O'Leary, Elizabeth Carbonell, Christina Austin-Tse, Gabrielle Lemire, Jillian Serrano, Brian Mangilog, Grace VanNoy, Mikhail Kolmogorov, Eric Vilain, Anne O'Donnell-Luria, Emmanuèle Délot, Karen H Miga, Jean Monlong, Benedict Paten

More than 50% of families with suspected rare monogenic diseases remain unsolved after whole-genome analysis by short-read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare-disease cohort of 98 samples from 41 families, using nanopore sequencing, achieving per sample ∼36× average coverage and 32-kb read N50 from a single flow cell. Our Napu pipeline generated assemblies, phased variants, and methylation calls. LRS covered, on average, coding exons in ∼280 genes and ∼5 known Mendelian disease-associated genes that were not covered by SRS. In comparison to SRS, LRS detected additional rare, functionally annotated variants, including structural variants (SVs) and tandem repeats, and completely phased 87% of protein-coding genes. LRS detected additional de novo variants and could be used to distinguish postzygotic mosaic variants from prezygotic de novos. Diagnostic variants were established by LRS in 11 probands, with diverse underlying genetic causes including de novo and compound heterozygous variants, large-scale SVs, and epigenetic modifications. Our study demonstrates LRS's potential to enhance diagnostic yield for rare monogenic diseases, implying utility in future clinical genomics workflows.

{"title":"Advancing long-read nanopore genome assembly and accurate variant calling for rare disease detection.","authors":"Shloka Negi, Sarah L Stenton, Seth I Berger, Paolo Canigiula, Brandy McNulty, Ivo Violich, Joshua Gardner, Todd Hillaker, Sara M O'Rourke, Melanie C O'Leary, Elizabeth Carbonell, Christina Austin-Tse, Gabrielle Lemire, Jillian Serrano, Brian Mangilog, Grace VanNoy, Mikhail Kolmogorov, Eric Vilain, Anne O'Donnell-Luria, Emmanuèle Délot, Karen H Miga, Jean Monlong, Benedict Paten","doi":"10.1016/j.ajhg.2025.01.002","DOIUrl":"10.1016/j.ajhg.2025.01.002","url":null,"abstract":"<p><p>More than 50% of families with suspected rare monogenic diseases remain unsolved after whole-genome analysis by short-read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare-disease cohort of 98 samples from 41 families, using nanopore sequencing, achieving per sample ∼36× average coverage and 32-kb read N50 from a single flow cell. Our Napu pipeline generated assemblies, phased variants, and methylation calls. LRS covered, on average, coding exons in ∼280 genes and ∼5 known Mendelian disease-associated genes that were not covered by SRS. In comparison to SRS, LRS detected additional rare, functionally annotated variants, including structural variants (SVs) and tandem repeats, and completely phased 87% of protein-coding genes. LRS detected additional de novo variants and could be used to distinguish postzygotic mosaic variants from prezygotic de novos. Diagnostic variants were established by LRS in 11 probands, with diverse underlying genetic causes including de novo and compound heterozygous variants, large-scale SVs, and epigenetic modifications. Our study demonstrates LRS's potential to enhance diagnostic yield for rare monogenic diseases, implying utility in future clinical genomics workflows.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"428-449"},"PeriodicalIF":8.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143035843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic and phenotypic correlates of mosaic loss of chromosome Y in blood. 血液中Y染色体镶嵌缺失的基因组和表型相关性。
IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-02-06 Epub Date: 2025-01-13 DOI: 10.1016/j.ajhg.2024.12.014
Yasminka A Jakubek, Xiaolong Ma, Adrienne M Stilp, Fulong Yu, Jason Bacon, Justin W Wong, Francois Aguet, Kristin Ardlie, Donna K Arnett, Kathleen Barnes, Joshua C Bis, Tom Blackwell, Lewis C Becker, Eric Boerwinkle, Russell P Bowler, Matthew J Budoff, April P Carson, Jiawen Chen, Michael H Cho, Josef Coresh, Nancy J Cox, Paul S de Vries, Dawn L DeMeo, David W Fardo, Myriam Fornage, Xiuqing Guo, Michael E Hall, Nancy Heard-Costa, Bertha Hidalgo, Marguerite Ryan Irvin, Andrew D Johnson, Eric Jorgenson, Eimear E Kenny, Michael D Kessler, Daniel Levy, Yun Li, Joao A C Lima, Yongmei Liu, Adam E Locke, Ruth J F Loos, Mitchell J Machiela, Rasika A Mathias, Braxton D Mitchell, Joanne M Murabito, Josyf C Mychaleckyj, Kari E North, Peter Orchard, Stephen C J Parker, Yash Pershad, Patricia A Peyser, Katherine A Pratte, Bruce M Psaty, Laura M Raffield, Susan Redline, Stephen S Rich, Jerome I Rotter, Sanjiv J Shah, Jennifer A Smith, Aaron P Smith, Albert Smith, Margaret A Taub, Hemant K Tiwari, Russell Tracy, Bjoernar Tuftin, Alexander G Bick, Vijay G Sankaran, Alexander P Reiner, Paul Scheet, Paul L Auer

Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole-genome sequencing (WGS) of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. We show that haplotype-based calling methods can be used with WGS data to successfully identify mLOY events. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European (EUR) ancestry group compared to other ancestries. We identify multiple loci associated with mLOY susceptibility and show that subsets of human hematopoietic stem cells are enriched for the activity of mLOY susceptibility variants. Finally, we found that certain alleles on chromosome Y are more likely to be lost than others in detectable mLOY clones.

Y嵌合缺失(mLOY)是人类血液中最常见的体细胞染色体改变。mLOY的存在与血细胞计数改变和阿尔茨海默病、实体瘤和其他年龄相关疾病的风险增加有关。为了更好地了解mLOY的遗传驱动因素和相关表型,我们对来自反式精准医学组学(TOPMed)项目的大量遗传多样性男性进行了全基因组测序(WGS)分析。我们表明,基于单倍型的调用方法可以与WGS数据一起成功地识别mLOY事件。这种方法使我们能够识别由遗传相似性定义的人群中mLOY频率的差异,揭示了欧洲(EUR)祖先组与其他祖先组相比,mLOY频率更高。我们确定了与mLOY易感性相关的多个位点,并表明人类造血干细胞亚群富集了mLOY易感性变异的活性。最后,我们发现在可检测的mLOY克隆中,Y染色体上的某些等位基因比其他等位基因更容易丢失。
{"title":"Genomic and phenotypic correlates of mosaic loss of chromosome Y in blood.","authors":"Yasminka A Jakubek, Xiaolong Ma, Adrienne M Stilp, Fulong Yu, Jason Bacon, Justin W Wong, Francois Aguet, Kristin Ardlie, Donna K Arnett, Kathleen Barnes, Joshua C Bis, Tom Blackwell, Lewis C Becker, Eric Boerwinkle, Russell P Bowler, Matthew J Budoff, April P Carson, Jiawen Chen, Michael H Cho, Josef Coresh, Nancy J Cox, Paul S de Vries, Dawn L DeMeo, David W Fardo, Myriam Fornage, Xiuqing Guo, Michael E Hall, Nancy Heard-Costa, Bertha Hidalgo, Marguerite Ryan Irvin, Andrew D Johnson, Eric Jorgenson, Eimear E Kenny, Michael D Kessler, Daniel Levy, Yun Li, Joao A C Lima, Yongmei Liu, Adam E Locke, Ruth J F Loos, Mitchell J Machiela, Rasika A Mathias, Braxton D Mitchell, Joanne M Murabito, Josyf C Mychaleckyj, Kari E North, Peter Orchard, Stephen C J Parker, Yash Pershad, Patricia A Peyser, Katherine A Pratte, Bruce M Psaty, Laura M Raffield, Susan Redline, Stephen S Rich, Jerome I Rotter, Sanjiv J Shah, Jennifer A Smith, Aaron P Smith, Albert Smith, Margaret A Taub, Hemant K Tiwari, Russell Tracy, Bjoernar Tuftin, Alexander G Bick, Vijay G Sankaran, Alexander P Reiner, Paul Scheet, Paul L Auer","doi":"10.1016/j.ajhg.2024.12.014","DOIUrl":"10.1016/j.ajhg.2024.12.014","url":null,"abstract":"<p><p>Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole-genome sequencing (WGS) of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. We show that haplotype-based calling methods can be used with WGS data to successfully identify mLOY events. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European (EUR) ancestry group compared to other ancestries. We identify multiple loci associated with mLOY susceptibility and show that subsets of human hematopoietic stem cells are enriched for the activity of mLOY susceptibility variants. Finally, we found that certain alleles on chromosome Y are more likely to be lost than others in detectable mLOY clones.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"276-290"},"PeriodicalIF":8.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and implementation of an action plan for justice, equity, diversity, and inclusion within the Clinical Genome Resource. 在临床基因组资源中设计和实施正义、公平、多样性和包容性的行动计划。
IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2025-02-06 Epub Date: 2025-01-09 DOI: 10.1016/j.ajhg.2024.12.009
Alice B Popejoy, Deborah I Ritter, Danielle Azzariti, Jonathan S Berg, Joanna E Bulkley, Mildred Cho, Claudia Gonzaga-Jauregui, Teri E Klein, Daphne O Martschenko, Akinyemi Oni-Orisan, Erin M Ramos, Heidi L Rehm, Erin R Riggs, Matthew W Wright, Michael Yudell, Sharon E Plon, Joannella Morales

How might members of a large, multi-institutional research and resource consortium foster justice, equity, diversity, and inclusion as central to its mission, goals, governance, and culture? These four principles, often referred to as JEDI, can be aspirational-but to be operationalized, they must be supported by concrete actions, investments, and a persistent long-term commitment to the principles themselves, which often requires self-reflection and course correction. We present here the iterative design process implemented across the Clinical Genome Resource (ClinGen) that led to the development of an action plan to operationalize JEDI principles across three major domains, with specific deliverables and commitments dedicated to each. Active involvement of consortium leadership, buy-in from its members at all levels, and support from NIH program staff at pivotal stages were essential to the success of this effort. The ClinGen JEDI action plan that resulted from our process is a living document and roadmap whose target goals and deliverables will continue to evolve. Here, we offer a transparent account of how a large, multi-site biomedical research consortium achieved this, as well as the challenges and opportunities we encountered on this first step in our journey toward enacting JEDI principles in our sphere of influence. We hope that others seeking to engage in this work will gain valuable insights from our process, experience, and lessons learned.

一个大型的、多机构的研究和资源联盟的成员如何将正义、公平、多样性和包容性作为其使命、目标、治理和文化的核心?这四个原则,通常被称为JEDI,可以是理想的,但是要操作化,它们必须得到具体的行动、投资和对原则本身的持久的长期承诺的支持,这通常需要自我反思和路线修正。我们在这里介绍了在临床基因组资源(ClinGen)上实施的迭代设计过程,该过程导致了在三个主要领域实施JEDI原则的行动计划的发展,并对每个领域都有具体的可交付成果和承诺。联盟领导的积极参与,各级成员的支持,以及NIH项目工作人员在关键阶段的支持对这项工作的成功至关重要。由我们的过程产生的ClinGen JEDI行动计划是一个活生生的文档和路线图,其目标目标和可交付成果将继续发展。在这里,我们提供了一个透明的说明,说明一个大型的、多地点的生物医学研究联盟是如何实现这一目标的,以及我们在我们的影响范围内制定JEDI原则的第一步中遇到的挑战和机遇。我们希望其他寻求参与这项工作的人能够从我们的过程、经验和教训中获得有价值的见解。
{"title":"Design and implementation of an action plan for justice, equity, diversity, and inclusion within the Clinical Genome Resource.","authors":"Alice B Popejoy, Deborah I Ritter, Danielle Azzariti, Jonathan S Berg, Joanna E Bulkley, Mildred Cho, Claudia Gonzaga-Jauregui, Teri E Klein, Daphne O Martschenko, Akinyemi Oni-Orisan, Erin M Ramos, Heidi L Rehm, Erin R Riggs, Matthew W Wright, Michael Yudell, Sharon E Plon, Joannella Morales","doi":"10.1016/j.ajhg.2024.12.009","DOIUrl":"10.1016/j.ajhg.2024.12.009","url":null,"abstract":"<p><p>How might members of a large, multi-institutional research and resource consortium foster justice, equity, diversity, and inclusion as central to its mission, goals, governance, and culture? These four principles, often referred to as JEDI, can be aspirational-but to be operationalized, they must be supported by concrete actions, investments, and a persistent long-term commitment to the principles themselves, which often requires self-reflection and course correction. We present here the iterative design process implemented across the Clinical Genome Resource (ClinGen) that led to the development of an action plan to operationalize JEDI principles across three major domains, with specific deliverables and commitments dedicated to each. Active involvement of consortium leadership, buy-in from its members at all levels, and support from NIH program staff at pivotal stages were essential to the success of this effort. The ClinGen JEDI action plan that resulted from our process is a living document and roadmap whose target goals and deliverables will continue to evolve. Here, we offer a transparent account of how a large, multi-site biomedical research consortium achieved this, as well as the challenges and opportunities we encountered on this first step in our journey toward enacting JEDI principles in our sphere of influence. We hope that others seeking to engage in this work will gain valuable insights from our process, experience, and lessons learned.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"215-223"},"PeriodicalIF":8.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American journal of human genetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1