C4 grasses employ distinct strategies to acclimate rubisco activase to heat stress.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioscience Reports Pub Date : 2024-10-30 DOI:10.1042/BSR20240353
Sarah C Stainbrook, Lindsey N Aubuchon, Amanda Chen, Emily Johnson, Audrey Si, Laila Walton, Angela J Ahrendt, Daniela Strenkert, Joseph M Jez
{"title":"C4 grasses employ distinct strategies to acclimate rubisco activase to heat stress.","authors":"Sarah C Stainbrook, Lindsey N Aubuchon, Amanda Chen, Emily Johnson, Audrey Si, Laila Walton, Angela J Ahrendt, Daniela Strenkert, Joseph M Jez","doi":"10.1042/BSR20240353","DOIUrl":null,"url":null,"abstract":"<p><p>Rising temperatures due to the current climate crisis will soon have devastating impacts on crop performance and resilience. In particular, CO2 assimilation is dramatically limited at high temperatures. CO2 assimilation is accomplished by rubisco, which is inhibited by the binding of inhibitory sugar phosphates to its active site. Plants therefore utilize the essential chaperone rubisco activase (RCA) to remove these inhibitors and enable continued CO2 fixation. However, RCA does not function at moderately high temperatures (42°C), resulting in impaired rubisco activity and reduced CO2 assimilation. We set out to understand temperature-dependent RCA regulation in four different C4 plants, with a focus on the crop plants maize (two cultivars) and sorghum, as well as the model grass Setaria viridis (setaria) using gas exchange measurements, which confirm that CO2 assimilation is limited by carboxylation in these organisms at high temperatures (42°C). All three species express distinct complements of RCA isoforms and each species alters the isoform and proteoform abundances in response to heat; however, the changes are species-specific. We also examine whether the heat-mediated inactivation of RCA is due to biochemical regulation rather than simple thermal denaturation. We reveal that biochemical regulation affects RCA function differently in different C4 species, and differences are apparent even between different cultivars of the same species. Our results suggest that each grass evolved different strategies to maintain RCA function during stress and we conclude that a successful engineering approach aimed at improving carbon capture in C4 grasses will need to accommodate these individual regulatory mechanisms.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499382/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20240353","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rising temperatures due to the current climate crisis will soon have devastating impacts on crop performance and resilience. In particular, CO2 assimilation is dramatically limited at high temperatures. CO2 assimilation is accomplished by rubisco, which is inhibited by the binding of inhibitory sugar phosphates to its active site. Plants therefore utilize the essential chaperone rubisco activase (RCA) to remove these inhibitors and enable continued CO2 fixation. However, RCA does not function at moderately high temperatures (42°C), resulting in impaired rubisco activity and reduced CO2 assimilation. We set out to understand temperature-dependent RCA regulation in four different C4 plants, with a focus on the crop plants maize (two cultivars) and sorghum, as well as the model grass Setaria viridis (setaria) using gas exchange measurements, which confirm that CO2 assimilation is limited by carboxylation in these organisms at high temperatures (42°C). All three species express distinct complements of RCA isoforms and each species alters the isoform and proteoform abundances in response to heat; however, the changes are species-specific. We also examine whether the heat-mediated inactivation of RCA is due to biochemical regulation rather than simple thermal denaturation. We reveal that biochemical regulation affects RCA function differently in different C4 species, and differences are apparent even between different cultivars of the same species. Our results suggest that each grass evolved different strategies to maintain RCA function during stress and we conclude that a successful engineering approach aimed at improving carbon capture in C4 grasses will need to accommodate these individual regulatory mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
C4 禾本科植物采用不同策略使 Rubisco 激活酶适应热胁迫
当前的气候危机导致气温不断升高,这将很快对作物的生长性能和抗逆性产生破坏性影响。特别是,二氧化碳的同化作用在高温下会受到极大限制。二氧化碳同化作用是由 Rubisco 完成的,而 Rubisco 的活性位点会受到抑制性糖磷酸盐的抑制。因此,植物利用重要的合子 Rubisco 激活酶(RCA)来清除这些抑制剂,使二氧化碳的固定得以继续。然而,RCA 在中度高温(42 摄氏度)下不起作用,导致 Rubisco 活性受损,二氧化碳同化能力降低。我们开始利用气体交换测量来了解四种不同 C4 植物的温度依赖性 RCA 调节,重点是作物玉米(两个栽培品种)和高粱,以及模式草 Setaria viridis(莎草),测量结果证实这些生物在高温(42oC)下的二氧化碳同化受到羧化的限制。所有三个物种都表达不同的 RCA 同工酶,并且每个物种都会改变同工酶和蛋白酶的丰度以应对高温;然而,这些变化是物种特异性的。我们还研究了热介导的 RCA 失活是否是由于生化调节而非简单的热变性。我们发现,在不同的 C4 植物中,生化调节对 RCA 功能的影响不同,甚至在同一物种的不同栽培品种之间也存在明显差异。我们的研究结果表明,每种禾本科植物都进化出了不同的策略,以在胁迫期间维持 RCA 的功能。我们的结论是,旨在改善 C4 禾本科植物碳捕获的成功工程方法需要适应这些不同的调节机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioscience Reports
Bioscience Reports 生物-细胞生物学
CiteScore
8.50
自引率
0.00%
发文量
380
审稿时长
6-12 weeks
期刊介绍: Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences. Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase. Articles are assessed on soundness, providing a home for valid findings and data. We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing: -new methodologies -tools and reagents to probe biological questions -mechanistic details -disease mechanisms -metabolic processes and their regulation -structure and function -bioenergetics
期刊最新文献
Overlapping and Distinct Physical and Biological Phenotypes in Pure Frailty and Obese Frailty. Multiple ASC-dependent inflammasomes drive differential pro-inflammatory cytokine production in a mouse model of tendinopathy. Simulated ischaemia/reperfusion impairs trophoblast function through divergent oxidative stress- and MMP-9-dependent mechanisms. Hormones in malaria infection: influence on disease severity, host physiology, and therapeutic opportunities. Neuroprotective properties of zinc oxide nanoparticles: therapeutic implications for Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1