Computational Study of Carbon Dioxide Capture by Tertiary Amines.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2025-01-14 Epub Date: 2024-11-11 DOI:10.1002/cphc.202400754
Chalakon Pornjariyawatch, Varangkana Jitchum, Krit Assawatwikrai, Pakanan Leepakorn, Michael Probst, Bundet Boekfa, Thana Maihom, Jumras Limtrakul
{"title":"Computational Study of Carbon Dioxide Capture by Tertiary Amines.","authors":"Chalakon Pornjariyawatch, Varangkana Jitchum, Krit Assawatwikrai, Pakanan Leepakorn, Michael Probst, Bundet Boekfa, Thana Maihom, Jumras Limtrakul","doi":"10.1002/cphc.202400754","DOIUrl":null,"url":null,"abstract":"<p><p>The reaction mechanisms and corresponding structure-activity relationships of tertiary amines with respect to CO<sub>2</sub> capture have been investigated using density functional theory (DFT) calculations. The reaction mechanism for CO<sub>2</sub> capture via base-catalyzed hydration to form bicarbonate is proposed to proceed in a single step involving proton transfer and the formation of a carbon-oxygen bond. Based on the height of the reaction barriers, we suggest that amines containing side chains with the ethyl group, along with a single hydroxyl group, and cyclic structures, are especially active for CO<sub>2</sub> capture. The activation barrier is shown to be a descriptor for predicting the experimental CO<sub>2</sub> loading values. To enhance the prediction accuracy for CO<sub>2</sub> loading, we employ the sure-independence screening and sparsifying operator (SISSO) method, which can scan a large pool of mathematical terms stemming from combining DFT-derived descriptors to select the superior ones. Thus, we can predict the CO<sub>2</sub> loading with acceptable accuracy from the obtained mathematical expression. Since the computational workload of applying this expression is negligible, this facilitates high-throughput screening and accelerates the design of tertiary amines for CO<sub>2</sub> capture.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400754"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400754","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The reaction mechanisms and corresponding structure-activity relationships of tertiary amines with respect to CO2 capture have been investigated using density functional theory (DFT) calculations. The reaction mechanism for CO2 capture via base-catalyzed hydration to form bicarbonate is proposed to proceed in a single step involving proton transfer and the formation of a carbon-oxygen bond. Based on the height of the reaction barriers, we suggest that amines containing side chains with the ethyl group, along with a single hydroxyl group, and cyclic structures, are especially active for CO2 capture. The activation barrier is shown to be a descriptor for predicting the experimental CO2 loading values. To enhance the prediction accuracy for CO2 loading, we employ the sure-independence screening and sparsifying operator (SISSO) method, which can scan a large pool of mathematical terms stemming from combining DFT-derived descriptors to select the superior ones. Thus, we can predict the CO2 loading with acceptable accuracy from the obtained mathematical expression. Since the computational workload of applying this expression is negligible, this facilitates high-throughput screening and accelerates the design of tertiary amines for CO2 capture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
叔胺捕获二氧化碳的计算研究。
我们利用密度泛函理论(DFT)计算研究了叔胺捕获二氧化碳的反应机理和相应的结构-活性关系。通过碱催化水合形成碳酸氢盐捕获二氧化碳的反应机理是通过质子转移和形成碳-氧键的单一步骤进行的。根据反应壁垒的高度,我们认为含有乙基侧链、单羟基和环状结构的胺对二氧化碳捕获特别有效。研究表明,活化势垒是预测二氧化碳实验负载值的描述因子。为了提高二氧化碳装载量的预测精度,我们采用了确定不依赖性筛选和稀疏化算子(SISSO)方法,该方法可以扫描由 DFT 衍生描述符组合而成的大量数学术语库,并从中选出优选术语。这样,我们就能根据得到的数学表达式以可接受的准确度预测二氧化碳负荷。由于应用该表达式的计算工作量可以忽略不计,因此有助于进行高通量筛选,加快设计用于二氧化碳捕集的叔胺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
DFT Study of the ORR Catalytic Activity of As-Doped and As-N Co-Doped Graphene Substrates. Unveiling Molecular Symmetry through Twisted X-Ray Diffraction. Lessons learned on obtaining reliable dynamic properties for ionic liquids. Deciphering Mg-Surface Interactions with Unsaturated Hydrocarbons: An Integrated Experimental-Theoretical Study. Deciphering the Stability of Porous Ionic Liquids: Flow Dynamics, Liquid Structure and Suspension Energetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1