Hypoxia signaling in the adipose tissue.

IF 5.3 2区 生物学 Q2 CELL BIOLOGY Journal of Molecular Cell Biology Pub Date : 2024-10-03 DOI:10.1093/jmcb/mjae039
Phu M Huynh, Fenfen Wang, Yu A An
{"title":"Hypoxia signaling in the adipose tissue.","authors":"Phu M Huynh, Fenfen Wang, Yu A An","doi":"10.1093/jmcb/mjae039","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity per se is rapidly emerging all over the planet and further accounts for many other life-threatening conditions, such as diabetes, cardiovascular diseases, and cancers. Decreased oxygen supply or increased relative oxygen consumption in the adipose tissue results in adipose tissue hypoxia, which is a hallmark of obesity. This review aims to provide an up-to-date overview of the hypoxia signaling in the adipose tissue. First, we summarize literature evidence to demonstrate that hypoxia is regularly observed during adipose tissue remodeling in human and rodent models of obesity. Next, we discuss how hypoxia-inducible factors (HIFs) are regulated and how adipose tissues behave in response to hypoxia. Then, the differential roles of adipose HIF-1α and HIF-2α in adipose tissue biology and obesity pathology are highlighted. Finally, the review emphasizes the importance of modulating adipose hypoxia as a therapeutic avenue to assist adipose tissues in functionally adapting to hypoxic conditions, ultimately promoting adipose health and improving outcomes due to obesity.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjae039","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity per se is rapidly emerging all over the planet and further accounts for many other life-threatening conditions, such as diabetes, cardiovascular diseases, and cancers. Decreased oxygen supply or increased relative oxygen consumption in the adipose tissue results in adipose tissue hypoxia, which is a hallmark of obesity. This review aims to provide an up-to-date overview of the hypoxia signaling in the adipose tissue. First, we summarize literature evidence to demonstrate that hypoxia is regularly observed during adipose tissue remodeling in human and rodent models of obesity. Next, we discuss how hypoxia-inducible factors (HIFs) are regulated and how adipose tissues behave in response to hypoxia. Then, the differential roles of adipose HIF-1α and HIF-2α in adipose tissue biology and obesity pathology are highlighted. Finally, the review emphasizes the importance of modulating adipose hypoxia as a therapeutic avenue to assist adipose tissues in functionally adapting to hypoxic conditions, ultimately promoting adipose health and improving outcomes due to obesity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂肪组织中的缺氧信号传导
肥胖症本身正在全球范围内迅速蔓延,并进一步导致许多其他危及生命的疾病,如糖尿病、心血管疾病和癌症。脂肪组织中氧气供应减少或相对耗氧量增加导致脂肪组织缺氧,这是肥胖症的一个特征。本综述旨在提供有关脂肪组织缺氧信号传导的最新概述。首先,我们总结了文献证据,证明在人类和啮齿类动物肥胖模型中脂肪组织重塑过程中经常观察到缺氧现象。接下来,我们讨论了缺氧诱导因子(HIFs)是如何被调控的,以及脂肪组织是如何对缺氧做出反应的。然后,我们强调了脂肪 HIF-1α 和 HIF-2α 在脂肪组织生物学和肥胖病理学中的不同作用。最后,综述强调了调节脂肪缺氧作为一种治疗途径的重要性,以帮助脂肪组织在功能上适应缺氧条件,最终促进脂肪健康并改善肥胖症的预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
期刊最新文献
Gender differences in the health workforce in China: an analysis of national data. Super-resolution microscopy unveils the nanoscale organization and self-limiting clustering of CD47 in human erythrocytes. Hypoxia signaling in the adipose tissue. ATP promotes protein coacervation through conformational compaction. HIV-1 inhibits IFITM3 expression to promote the infection of megakaryocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1