Steven Winter , Ali Mahzarnia , Robert J. Anderson , Zay Yar Han , Jessica Tremblay , Jacques A. Stout , Hae Sol Moon , Daniel Marcellino , David B. Dunson , Alexandra Badea
{"title":"Brain network fingerprints of Alzheimer's disease risk factors in mouse models with humanized APOE alleles","authors":"Steven Winter , Ali Mahzarnia , Robert J. Anderson , Zay Yar Han , Jessica Tremblay , Jacques A. Stout , Hae Sol Moon , Daniel Marcellino , David B. Dunson , Alexandra Badea","doi":"10.1016/j.mri.2024.110251","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease (AD) presents complex challenges due to its multifactorial nature, poorly understood etiology, and late detection. The mechanisms through which genetic and modifiable risk factors influence disease susceptibility are under intense investigation, with APOE being the major genetic risk factor for late onset AD. Yet the impact of unique risk factors on brain networks is difficult to disentangle, and their interactions remain unclear.</div><div>To model multiple risk factors, including APOE genotype, age, sex, diet, and immunity we used a cross sectional design, leveraging mice expressing human APOE and NOS2 genes, conferring a reduced immune response compared to mouse Nos2. We used network topological and GraphClass analyses of brain connectomes derived from accelerated diffusion-weighted MRI to assess the global and local impact of risk factors, in the absence of AD pathology.</div><div>Aging and a high-fat diet impacted extensive networks comprising AD-vulnerable regions, including the temporal association cortex, amygdala, and the periaqueductal gray, involved in stress responses. Sex impacted networks including sexually dimorphic regions (thalamus, insula, hypothalamus) and key memory-processing areas (fimbria, septum). APOE genotypes modulated connectivity in memory, sensory, and motor regions, while diet and immunity both impacted the insula and hypothalamus. Notably, these risk factors converged on a circuit comprising 63 of 54,946 total connections (0.11% of the connectome), highlighting shared vulnerability amongst multiple AD risk factors in regions essential for sensory integration, emotional regulation, decision making, motor coordination, memory, homeostasis, and interoception. APOE genotype specific immune signatures support the design of interventions tailored to risk profiles. Sparse Canonical Correlation Analysis (CCA) including spatial memory as a risk factor resulted in a network comprising 80 edges, showing significant overlap with risk-associated networks from GraphClass. The largest overlaps were observed with networks impacted by diet (47 edges), immunity (39 edges), APOE3 vs 4 (26 edges), sex (23 edges), and age (19 edges), the resulting networks supporting the use of sensory cues in spatial memory retrieval.</div><div>These network-based biomarkers hold translational value for distinguishing high-risk versus low-risk participants at preclinical AD stages, suggest circuits as potential therapeutic targets, and advance our understanding of network fingerprints associated with AD risk.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"114 ","pages":"Article 110251"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X24002327","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) presents complex challenges due to its multifactorial nature, poorly understood etiology, and late detection. The mechanisms through which genetic and modifiable risk factors influence disease susceptibility are under intense investigation, with APOE being the major genetic risk factor for late onset AD. Yet the impact of unique risk factors on brain networks is difficult to disentangle, and their interactions remain unclear.
To model multiple risk factors, including APOE genotype, age, sex, diet, and immunity we used a cross sectional design, leveraging mice expressing human APOE and NOS2 genes, conferring a reduced immune response compared to mouse Nos2. We used network topological and GraphClass analyses of brain connectomes derived from accelerated diffusion-weighted MRI to assess the global and local impact of risk factors, in the absence of AD pathology.
Aging and a high-fat diet impacted extensive networks comprising AD-vulnerable regions, including the temporal association cortex, amygdala, and the periaqueductal gray, involved in stress responses. Sex impacted networks including sexually dimorphic regions (thalamus, insula, hypothalamus) and key memory-processing areas (fimbria, septum). APOE genotypes modulated connectivity in memory, sensory, and motor regions, while diet and immunity both impacted the insula and hypothalamus. Notably, these risk factors converged on a circuit comprising 63 of 54,946 total connections (0.11% of the connectome), highlighting shared vulnerability amongst multiple AD risk factors in regions essential for sensory integration, emotional regulation, decision making, motor coordination, memory, homeostasis, and interoception. APOE genotype specific immune signatures support the design of interventions tailored to risk profiles. Sparse Canonical Correlation Analysis (CCA) including spatial memory as a risk factor resulted in a network comprising 80 edges, showing significant overlap with risk-associated networks from GraphClass. The largest overlaps were observed with networks impacted by diet (47 edges), immunity (39 edges), APOE3 vs 4 (26 edges), sex (23 edges), and age (19 edges), the resulting networks supporting the use of sensory cues in spatial memory retrieval.
These network-based biomarkers hold translational value for distinguishing high-risk versus low-risk participants at preclinical AD stages, suggest circuits as potential therapeutic targets, and advance our understanding of network fingerprints associated with AD risk.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.