Chronological events unfolding the vegetative and floral phenology of apical bud in Crocus sativus.

IF 2.5 3区 生物学 Q3 CELL BIOLOGY Protoplasma Pub Date : 2024-10-04 DOI:10.1007/s00709-024-01995-2
Anjali Chaudhary, Ruchika Thakur, Tina Roy, Kanchan Yadav, Swati Verma, Kunal Singh
{"title":"Chronological events unfolding the vegetative and floral phenology of apical bud in Crocus sativus.","authors":"Anjali Chaudhary, Ruchika Thakur, Tina Roy, Kanchan Yadav, Swati Verma, Kunal Singh","doi":"10.1007/s00709-024-01995-2","DOIUrl":null,"url":null,"abstract":"<p><p>Saffron (Crocus sativus L.) is an infertile perennial geophyte considered the most expensive spice in the world. Seasonal fluctuations and climate change have significant impact on the growth, development, and yield of saffron stigma, which is the economically valued part of plant. The stigma being part of the flower, the knowledge of phenotypic transition from dormant apical bud up to flowering is vital, yet, not explored properly. The complexity of flowering in C. sativus further accentuates by the lack of clear demarcation between flowering and non-flowering corms in terms of weight and sizes, as small corms are known to be vegetative only, while large ones produce flower. Therefore, chronological phenotyping on a weekly and quarterly basis of apical shoot and flowering primordia between June and October was carried out to understand the organogenesis sequentially. In large corms, the stamen was the first floral organ to initiate followed by the formation of tepal from the base of the stamen. The plants exhibited both synanthous and hysteranthous flowering. Untargeted metabolome analysis of dormant apical bud just before dormancy break from flowering buds from large corms as well as non-flowering buds from small corms identified the presence of many differentially accumulated metabolites including sphingosine and meglutol. Key metabolites such as phytosphingosine, 3-hydroxy-3-methyl glutaric acid, 3-acetamidopropanal, 6-hydroxykynurenic acid, D-serine, and 1-D-myo-inositol 3-phosphate were also detected having associated with isoprenoid biosynthesis, lignin pathway regulation, and carbohydrate metabolism that participates in flowering. The integration of morphological, histological, and metabolomic data offers a comprehensive view of the flowering process that can be utilised in future biotechnological interventions in C. sativus.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01995-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Saffron (Crocus sativus L.) is an infertile perennial geophyte considered the most expensive spice in the world. Seasonal fluctuations and climate change have significant impact on the growth, development, and yield of saffron stigma, which is the economically valued part of plant. The stigma being part of the flower, the knowledge of phenotypic transition from dormant apical bud up to flowering is vital, yet, not explored properly. The complexity of flowering in C. sativus further accentuates by the lack of clear demarcation between flowering and non-flowering corms in terms of weight and sizes, as small corms are known to be vegetative only, while large ones produce flower. Therefore, chronological phenotyping on a weekly and quarterly basis of apical shoot and flowering primordia between June and October was carried out to understand the organogenesis sequentially. In large corms, the stamen was the first floral organ to initiate followed by the formation of tepal from the base of the stamen. The plants exhibited both synanthous and hysteranthous flowering. Untargeted metabolome analysis of dormant apical bud just before dormancy break from flowering buds from large corms as well as non-flowering buds from small corms identified the presence of many differentially accumulated metabolites including sphingosine and meglutol. Key metabolites such as phytosphingosine, 3-hydroxy-3-methyl glutaric acid, 3-acetamidopropanal, 6-hydroxykynurenic acid, D-serine, and 1-D-myo-inositol 3-phosphate were also detected having associated with isoprenoid biosynthesis, lignin pathway regulation, and carbohydrate metabolism that participates in flowering. The integration of morphological, histological, and metabolomic data offers a comprehensive view of the flowering process that can be utilised in future biotechnological interventions in C. sativus.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鳄梨顶芽无性繁殖和开花物候的时序事件。
藏红花(Crocus sativus L.)是一种多年生不孕地生植物,被认为是世界上最昂贵的香料。季节波动和气候变化对藏红花柱头的生长、发育和产量有重大影响,而柱头是植物中具有经济价值的部分。柱头是花的一部分,因此了解从休眠顶芽到开花的表型转变至关重要,但却没有进行适当的探索。在重量和大小方面,开花和不开花的茎秆之间缺乏明确的界限,这进一步加剧了荠菜开花的复杂性,因为众所周知,小茎秆只是无性繁殖,而大茎秆则会开花。因此,在 6 月至 10 月期间,每周和每季度都对顶端嫩枝和开花原基进行了时序表型分析,以了解器官发生的先后顺序。在大型球茎中,雄蕊是最先开始形成的花器官,随后从雄蕊基部开始形成花被片。植株同时表现出并花和滞育开花。对大球茎花蕾和小球茎非花蕾休眠期结束前的休眠顶芽进行的非靶向代谢组分析发现,存在许多差异积累的代谢物,包括鞘氨醇和麦芽酚。此外,还检测到植物鞘磷脂、3-羟基-3-甲基戊二酸、3-乙酰胺基丙醛、6-羟基犬尿氨酸、D-丝氨酸和 1-D-肌醇 3-磷酸等关键代谢物,这些代谢物与异戊烯生物合成、木质素途径调节和参与开花的碳水化合物代谢有关。形态学、组织学和代谢组学数据的整合提供了开花过程的全面视图,可用于未来对 C. sativus 的生物技术干预。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protoplasma
Protoplasma 生物-细胞生物学
CiteScore
6.60
自引率
6.90%
发文量
99
审稿时长
4-8 weeks
期刊介绍: Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields: cell biology of both single and multicellular organisms molecular cytology the cell cycle membrane biology including biogenesis, dynamics, energetics and electrophysiology inter- and intracellular transport the cytoskeleton organelles experimental and quantitative ultrastructure cyto- and histochemistry Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".
期刊最新文献
Antennal sensilla variability among castes and sexes in the leaf-cutter ant Acromyrmex subterraneus subterraneus. Rhodotorula mucilaginosa: a new potential human pathogen found in the ciliate Paramecium bursaria. Ontogenetic differences in sun and shade galls of Clinodiplosis profusa on Eugenia uniflora leaves and the cytological antioxidant mechanisms in gall cells. Effect of drought acclimation on sugar metabolism in millet. Interaction of Capnodium alfenasii with extrafloral nectaries of Azadirachta indica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1