{"title":"Role of RNA polymerase III transcription and regulation in ischaemic stroke.","authors":"Chi Kwan Tsang, X F Steven Zheng","doi":"10.1080/15476286.2024.2409554","DOIUrl":null,"url":null,"abstract":"<p><p>Ischaemic stroke is a leading cause of death and life-long disability due to neuronal cell death resulting from interruption of glucose and oxygen supplies. RNA polymerase III (Pol III)-dependent transcription plays a central role in protein synthesis that is necessary for normal cerebral neuronal functions, and the survival and recovery under pathological conditions. Notably, Pol III transcription is highly sensitive to ischaemic stress that is known to rapidly shut down Pol III transcriptional activity. However, its precise role in ischaemic stroke, especially during the acute and recovery phases, remains poorly understood. The microenvironment within the ischaemic brain undergoes dynamic changes in different phases after stroke. Emerging evidence highlights the distinct roles of Pol III transcription in neuroprotection during the acute phase and repair during the recovery phase of stroke. Additionally, investigations into the mTOR-MAF1 signalling pathway, a conserved regulator of Pol-III transcription, reveal its therapeutic potential in enhancing acute phase neuroprotection and recovery phase repair.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"21 1","pages":"1-10"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457610/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2024.2409554","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischaemic stroke is a leading cause of death and life-long disability due to neuronal cell death resulting from interruption of glucose and oxygen supplies. RNA polymerase III (Pol III)-dependent transcription plays a central role in protein synthesis that is necessary for normal cerebral neuronal functions, and the survival and recovery under pathological conditions. Notably, Pol III transcription is highly sensitive to ischaemic stress that is known to rapidly shut down Pol III transcriptional activity. However, its precise role in ischaemic stroke, especially during the acute and recovery phases, remains poorly understood. The microenvironment within the ischaemic brain undergoes dynamic changes in different phases after stroke. Emerging evidence highlights the distinct roles of Pol III transcription in neuroprotection during the acute phase and repair during the recovery phase of stroke. Additionally, investigations into the mTOR-MAF1 signalling pathway, a conserved regulator of Pol-III transcription, reveal its therapeutic potential in enhancing acute phase neuroprotection and recovery phase repair.
缺血性中风是葡萄糖和氧气供应中断导致神经细胞死亡和终身残疾的主要原因。依赖 RNA 聚合酶 III(Pol III)的转录在蛋白质合成中发挥着核心作用,而蛋白质合成是大脑神经元正常功能以及在病理条件下存活和恢复所必需的。值得注意的是,Pol III 转录对缺血应激高度敏感,已知缺血应激会迅速关闭 Pol III 的转录活性。然而,人们对 Pol III 在缺血性脑卒中(尤其是急性期和恢复期)中的确切作用仍知之甚少。缺血脑内的微环境在中风后的不同阶段会发生动态变化。新出现的证据强调了 Pol III 转录在中风急性期神经保护和恢复期神经修复中的不同作用。此外,mTOR-MAF1 信号通路是 Pol-III 转录的一个保守调控因子,对该通路的研究揭示了它在加强急性期神经保护和恢复期修复方面的治疗潜力。
期刊介绍:
RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research.
RNA Biology brings together a multidisciplinary community of scientists working in the areas of:
Transcription and splicing
Post-transcriptional regulation of gene expression
Non-coding RNAs
RNA localization
Translation and catalysis by RNA
Structural biology
Bioinformatics
RNA in disease and therapy