{"title":"Ensemble of vision transformer architectures for efficient Alzheimer's Disease classification.","authors":"Noushath Shaffi, Vimbi Viswan, Mufti Mahmud","doi":"10.1186/s40708-024-00238-7","DOIUrl":null,"url":null,"abstract":"<p><p>Transformers have dominated the landscape of Natural Language Processing (NLP) and revolutionalized generative AI applications. Vision Transformers (VT) have recently become a new state-of-the-art for computer vision applications. Motivated by the success of VTs in capturing short and long-range dependencies and their ability to handle class imbalance, this paper proposes an ensemble framework of VTs for the efficient classification of Alzheimer's Disease (AD). The framework consists of four vanilla VTs, and ensembles formed using hard and soft-voting approaches. The proposed model was tested using two popular AD datasets: OASIS and ADNI. The ADNI dataset was employed to assess the models' efficacy under imbalanced and data-scarce conditions. The ensemble of VT saw an improvement of around 2% compared to individual models. Furthermore, the results are compared with state-of-the-art and custom-built Convolutional Neural Network (CNN) architectures and Machine Learning (ML) models under varying data conditions. The experimental results demonstrated an overall performance gain of 4.14% and 4.72% accuracy over the ML and CNN algorithms, respectively. The study has also identified specific limitations and proposes avenues for future research. The codes used in the study are made publicly available.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"25"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450128/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00238-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Transformers have dominated the landscape of Natural Language Processing (NLP) and revolutionalized generative AI applications. Vision Transformers (VT) have recently become a new state-of-the-art for computer vision applications. Motivated by the success of VTs in capturing short and long-range dependencies and their ability to handle class imbalance, this paper proposes an ensemble framework of VTs for the efficient classification of Alzheimer's Disease (AD). The framework consists of four vanilla VTs, and ensembles formed using hard and soft-voting approaches. The proposed model was tested using two popular AD datasets: OASIS and ADNI. The ADNI dataset was employed to assess the models' efficacy under imbalanced and data-scarce conditions. The ensemble of VT saw an improvement of around 2% compared to individual models. Furthermore, the results are compared with state-of-the-art and custom-built Convolutional Neural Network (CNN) architectures and Machine Learning (ML) models under varying data conditions. The experimental results demonstrated an overall performance gain of 4.14% and 4.72% accuracy over the ML and CNN algorithms, respectively. The study has also identified specific limitations and proposes avenues for future research. The codes used in the study are made publicly available.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing