Terahertz Dirac Hyperbolic Metamaterial

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Photonics Pub Date : 2024-10-04 DOI:10.1021/acsphotonics.4c01004
Zhengtianye Wang, Saadia Nasir, Sathwik Bharadwaj, Yongchen Liu, Sivakumar Vishnuvardhan Mambakkam, Mingyu Yu, Stephanie Law
{"title":"Terahertz Dirac Hyperbolic Metamaterial","authors":"Zhengtianye Wang, Saadia Nasir, Sathwik Bharadwaj, Yongchen Liu, Sivakumar Vishnuvardhan Mambakkam, Mingyu Yu, Stephanie Law","doi":"10.1021/acsphotonics.4c01004","DOIUrl":null,"url":null,"abstract":"Hyperbolic metamaterials (HMMs) are engineered materials with a hyperbolic isofrequency surface, enabling a range of interesting phenomena and applications including negative refraction, enhanced sensing, and subdiffraction imaging, focusing, and waveguiding. Existing HMMs primarily work in the visible and infrared spectral range due to the inherent properties of their constituent materials. Here, we demonstrate a THz-range Dirac HMM using topological insulators as the building blocks. We find that the structure houses up to three high-wavevector volume plasmon polariton (VPP) modes, consistent with transfer matrix modeling and effective medium theory calculations. The VPPs have mode indices greater than 100, significantly larger than observed for VPP modes in HMMs made from metals or doped semiconductors while maintaining comparable quality factors. We attribute these properties to the two-dimensional Dirac nature of the electrons occupying the topological insulator surface states. Because these are van der Waals materials, these structures can be grown at a wafer-scale on a variety of substrates, allowing them to be integrated with existing THz structures and enabling next-generation THz optical devices.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01004","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperbolic metamaterials (HMMs) are engineered materials with a hyperbolic isofrequency surface, enabling a range of interesting phenomena and applications including negative refraction, enhanced sensing, and subdiffraction imaging, focusing, and waveguiding. Existing HMMs primarily work in the visible and infrared spectral range due to the inherent properties of their constituent materials. Here, we demonstrate a THz-range Dirac HMM using topological insulators as the building blocks. We find that the structure houses up to three high-wavevector volume plasmon polariton (VPP) modes, consistent with transfer matrix modeling and effective medium theory calculations. The VPPs have mode indices greater than 100, significantly larger than observed for VPP modes in HMMs made from metals or doped semiconductors while maintaining comparable quality factors. We attribute these properties to the two-dimensional Dirac nature of the electrons occupying the topological insulator surface states. Because these are van der Waals materials, these structures can be grown at a wafer-scale on a variety of substrates, allowing them to be integrated with existing THz structures and enabling next-generation THz optical devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太赫兹狄拉克超双曲超材料
双曲超材料(HMMs)是一种具有双曲等频面的工程材料,可产生一系列有趣的现象和应用,包括负折射、增强传感、亚衍射成像、聚焦和波导。由于其组成材料的固有特性,现有的 HMM 主要在可见光和红外光谱范围内工作。在这里,我们展示了以拓扑绝缘体为构件的太赫兹范围狄拉克 HMM。我们发现,该结构包含多达三种高波向量体质极化子(VPP)模式,这与传递矩阵建模和有效介质理论计算结果一致。VPP 的模式指数大于 100,明显大于在金属或掺杂半导体制成的 HMM 中观察到的 VPP 模式,同时还保持了可比的品质因数。我们将这些特性归因于占据拓扑绝缘体表面态的电子的二维狄拉克性质。由于这些都是范德华材料,这些结构可以在各种基底上以晶圆级生长,从而可以与现有的太赫兹结构集成,实现下一代太赫兹光学设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
期刊最新文献
Enhancing Near-Field Radiative Heat Transfer between Dissimilar Dielectric Media by Coupling Surface Phonon Polaritons to Graphene’s Plasmons Terahertz Dirac Hyperbolic Metamaterial Spontaneously-Oriented Evaporated Organic Semiconductor Thin Films for Second-Order Nonlinear Photonics Circularly Polarized High-Harmonic Beams Carrying Self-Torque or Time-Dependent Orbital Angular Momentum Point Spread Function Engineering for Spiral Phase Interferometric Scattering Microscopy Enables Robust 3D Single-Particle Tracking and Characterization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1