Yuhan Wang , Yu Huo , Afrasyab Khan, Ningna Ma, Weijun Mai
{"title":"Possible mechanisms for adverse effects on zebrafish sperm and testes associated with low-level chronic PFOA exposure","authors":"Yuhan Wang , Yu Huo , Afrasyab Khan, Ningna Ma, Weijun Mai","doi":"10.1016/j.aquatox.2024.107108","DOIUrl":null,"url":null,"abstract":"<div><div>Perfluorooctanoic acid (PFOA), which is widely used during the manufacturing of fluoropolymer coatings and polytetrafluoroethylene, is now a widespread pollutant in the environment and within the human body. This study used zebrafish, an aquatic model species, to investigate how low levels of chronic PFOA exposure affect the reproductive system. The results of the experiments in which zebrafish were exposed to 414 ng/L or 4140 ng/L for 60 days showed a variety of adverse effects on testicular tissue and sperm, including dose-dependent changes in plasma estradiol and testosterone levels, various sperm malformations, decreased sperm motility and concentration, and PFOA-induced oxidative stress and testicular damage with increased rates of apoptosis. In addition, offspring of the zebrafish that had been exposed to PFOA were characterized by increased malformation and mortality. Subsequent transcriptional analyses of the male gonads revealed the significant activation of oxidative stress bioprocesses and immuno-inflammatory signaling pathways, along with the dysregulation of reproductive bioprocesses. In conclusion, low-level chronic exposure to PFOA affects both the reproductive performance of adults and the development of offspring; the mechanisms for these adverse effects involve alterations in several molecular pathways that may be involved in PFOA-induced oxidative stress and reproductive abnormalities. The presented data can be used to assess the ecotoxicity of PFOA to the male reproductive system at environmentally-relevant concentrations.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"276 ","pages":"Article 107108"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24002789","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Perfluorooctanoic acid (PFOA), which is widely used during the manufacturing of fluoropolymer coatings and polytetrafluoroethylene, is now a widespread pollutant in the environment and within the human body. This study used zebrafish, an aquatic model species, to investigate how low levels of chronic PFOA exposure affect the reproductive system. The results of the experiments in which zebrafish were exposed to 414 ng/L or 4140 ng/L for 60 days showed a variety of adverse effects on testicular tissue and sperm, including dose-dependent changes in plasma estradiol and testosterone levels, various sperm malformations, decreased sperm motility and concentration, and PFOA-induced oxidative stress and testicular damage with increased rates of apoptosis. In addition, offspring of the zebrafish that had been exposed to PFOA were characterized by increased malformation and mortality. Subsequent transcriptional analyses of the male gonads revealed the significant activation of oxidative stress bioprocesses and immuno-inflammatory signaling pathways, along with the dysregulation of reproductive bioprocesses. In conclusion, low-level chronic exposure to PFOA affects both the reproductive performance of adults and the development of offspring; the mechanisms for these adverse effects involve alterations in several molecular pathways that may be involved in PFOA-induced oxidative stress and reproductive abnormalities. The presented data can be used to assess the ecotoxicity of PFOA to the male reproductive system at environmentally-relevant concentrations.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.