Enhancing motor skill learning through multiple sessions of online high-definition transcranial direct current stimulation in healthy adults: insights from EEG power spectrum.
Feng Guo, Maolin Niu, Nicholas J Hanson, Jianrui Guo, Kuo Zhou, Tan Zhao, Yinghui Ren
{"title":"Enhancing motor skill learning through multiple sessions of online high-definition transcranial direct current stimulation in healthy adults: insights from EEG power spectrum.","authors":"Feng Guo, Maolin Niu, Nicholas J Hanson, Jianrui Guo, Kuo Zhou, Tan Zhao, Yinghui Ren","doi":"10.1093/cercor/bhae395","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this study was to evaluate the influence of high-definition transcranial direct current stimulation (HD-tDCS) on finger motor skill acquisition. Thirty-one healthy adult males were randomly assigned to one of three groups: online HD-tDCS (administered during motor skill learning), offline HD-tDCS (delivered before motor skill learning), and a sham group. Participants engaged in a visual isometric pinch task for three consecutive days. Overall motor skill learning and speed-accuracy tradeoff function were used to evaluate the efficacy of tDCS. Electroencephalography was recorded and power spectral density was calculated. Both online and offline HD-tDCS total motor skill acquisition was significantly higher than the sham group (P < 0.001 and P < 0.05, respectively). Motor skill acquisition in the online group was higher than offline (P = 0.132, Cohen's d = 1.46). Speed-accuracy tradeoff function in the online group was higher than both offline and sham groups in the post-test. The online group exhibited significantly lower electroencephalography activity in the frontal, fronto-central, and centro-parietal alpha band regions compared to the sham (P < 0.05). The findings suggest that HD-tDCS application can boost finger motor skill acquisition, with online HD-tDCS displaying superior facilitation. Furthermore, online HD-tDCS reduces the power of alpha rhythms during motor skill execution, enhancing information processing and skill learning efficiency.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae395","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study was to evaluate the influence of high-definition transcranial direct current stimulation (HD-tDCS) on finger motor skill acquisition. Thirty-one healthy adult males were randomly assigned to one of three groups: online HD-tDCS (administered during motor skill learning), offline HD-tDCS (delivered before motor skill learning), and a sham group. Participants engaged in a visual isometric pinch task for three consecutive days. Overall motor skill learning and speed-accuracy tradeoff function were used to evaluate the efficacy of tDCS. Electroencephalography was recorded and power spectral density was calculated. Both online and offline HD-tDCS total motor skill acquisition was significantly higher than the sham group (P < 0.001 and P < 0.05, respectively). Motor skill acquisition in the online group was higher than offline (P = 0.132, Cohen's d = 1.46). Speed-accuracy tradeoff function in the online group was higher than both offline and sham groups in the post-test. The online group exhibited significantly lower electroencephalography activity in the frontal, fronto-central, and centro-parietal alpha band regions compared to the sham (P < 0.05). The findings suggest that HD-tDCS application can boost finger motor skill acquisition, with online HD-tDCS displaying superior facilitation. Furthermore, online HD-tDCS reduces the power of alpha rhythms during motor skill execution, enhancing information processing and skill learning efficiency.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.