{"title":"Pre-anesthetic brain network metrics as predictors of individual propofol sensitivity","authors":"","doi":"10.1016/j.cmpb.2024.108447","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>Numerous factors, including demographic characteristics, have been implicated in modulating individual sensitivity to propofol; however, substantial inter-individual differences persist even after accounting for these factors. This study thus aimed to explore whether pre-anesthesia brain functional network metrics correlate with an individual's sensitivity to propofol.</div></div><div><h3>Methods</h3><div>A total of 54 subjects, including 30 patients and 24 healthy volunteers, were enrolled. Propofol was administered via a target-controlled infusion device, and anesthesia depth was monitored using a bispectral index monitor. Sensitivity to propofol was quantified using the induction time, measured from infusion onset to the bispectral index, which reached 60. Brain functional network metrics indicative of functional integration and segregation, centrality, and network resilience were computed from pre-anesthetic 60-channel EEG recordings. Linear regression analysis and machine learning predictive models were applied to evaluate the contribution of pre-anesthesia network metrics in predicting individual sensitivity to propofol.</div></div><div><h3>Results</h3><div>Our analysis results revealed that subjects could be categorized into high- or low-sensitivity groups based on their induction time. Individuals with low sensitivity exhibited a greater network degree, clustering coefficient, global efficiency, and betweenness centrality, along with reduced modularity and assortativity coefficient in the alpha band. Furthermore, alpha band network metrics were significantly correlated with individual induction time. Leveraging these network metrics as features enabled the classification of individuals into high- or low-sensitivity groups with an accuracy of 94%.</div></div><div><h3>Conclusions</h3><div>Using a clinically relevant endpoint that signifies the level of anesthesia suitable for surgical procedures, this study underscored the robust correlation between pre-anesthesia alpha-band network metrics and individual sensitivity to propofol in a cohort that included both patients and healthy volunteers. Our findings offer preliminary insights into the potential utility of pre-anesthetic brain status assessment to predict propofol sensitivity on an individual basis, which may help to develop a more accurate personalized anesthesia plan.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004401","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective
Numerous factors, including demographic characteristics, have been implicated in modulating individual sensitivity to propofol; however, substantial inter-individual differences persist even after accounting for these factors. This study thus aimed to explore whether pre-anesthesia brain functional network metrics correlate with an individual's sensitivity to propofol.
Methods
A total of 54 subjects, including 30 patients and 24 healthy volunteers, were enrolled. Propofol was administered via a target-controlled infusion device, and anesthesia depth was monitored using a bispectral index monitor. Sensitivity to propofol was quantified using the induction time, measured from infusion onset to the bispectral index, which reached 60. Brain functional network metrics indicative of functional integration and segregation, centrality, and network resilience were computed from pre-anesthetic 60-channel EEG recordings. Linear regression analysis and machine learning predictive models were applied to evaluate the contribution of pre-anesthesia network metrics in predicting individual sensitivity to propofol.
Results
Our analysis results revealed that subjects could be categorized into high- or low-sensitivity groups based on their induction time. Individuals with low sensitivity exhibited a greater network degree, clustering coefficient, global efficiency, and betweenness centrality, along with reduced modularity and assortativity coefficient in the alpha band. Furthermore, alpha band network metrics were significantly correlated with individual induction time. Leveraging these network metrics as features enabled the classification of individuals into high- or low-sensitivity groups with an accuracy of 94%.
Conclusions
Using a clinically relevant endpoint that signifies the level of anesthesia suitable for surgical procedures, this study underscored the robust correlation between pre-anesthesia alpha-band network metrics and individual sensitivity to propofol in a cohort that included both patients and healthy volunteers. Our findings offer preliminary insights into the potential utility of pre-anesthetic brain status assessment to predict propofol sensitivity on an individual basis, which may help to develop a more accurate personalized anesthesia plan.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.