Enhancing biomechanical outcomes in proximal femoral osteotomy through optimised blade plate sizing: A neuromusculoskeletal-informed finite element analysis
{"title":"Enhancing biomechanical outcomes in proximal femoral osteotomy through optimised blade plate sizing: A neuromusculoskeletal-informed finite element analysis","authors":"","doi":"10.1016/j.cmpb.2024.108480","DOIUrl":null,"url":null,"abstract":"<div><div>Proximal femoral osteotomy (PFO) is a frequently performed surgical procedure to correct hip deformities in the paediatric population. The optimal size of the blade plate implant in PFO is a critical but underexplored factor influencing biomechanical outcomes. This study introduces a novel approach to refine implant selection by integrating personalized neuromusculoskeletal modelling with finite element analysis. Using computed tomography scans and walking gait data from six paediatric patients with various pathologies and deformities, we assessed the impact of four distinct implant width-to-femoral neck diameter (W-D) ratios (30 %, 40 %, 50 %, and 60 %) on surgical outcomes. The results show that the risk of implant yield generally decreases with increasing W-D ratio, except for Patient P2, where the yield risk remained below 100 % across all ratios. The implant factor of safety (FoS) increased with larger W-D ratios, except for Patients P2 and P6, where the highest FoS was 2.60 (P2) and 0.49 (P6) at a 60 % W-D ratio. Bone-implant micromotion consistently remained below 40 µm at higher W-D ratios, with a 50 % W-D ratio striking the optimal balance for mechanical stability in all patients except P6. Although interfragmentary and principal femoral strains did not display consistent trends across all patients, they highlight the need for patient-specific approaches to ensure effective fracture healing. These findings highlight the importance of patient-specific considerations in implant selection, offering surgeons a more informed pathway to enhance patient outcomes and extend implant longevity. Additionally, the insights gained from this study provide valuable guidance for manufacturers in designing next-generation blade plates tailored to improve biomechanical performance in paediatric orthopaedics.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004735","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Proximal femoral osteotomy (PFO) is a frequently performed surgical procedure to correct hip deformities in the paediatric population. The optimal size of the blade plate implant in PFO is a critical but underexplored factor influencing biomechanical outcomes. This study introduces a novel approach to refine implant selection by integrating personalized neuromusculoskeletal modelling with finite element analysis. Using computed tomography scans and walking gait data from six paediatric patients with various pathologies and deformities, we assessed the impact of four distinct implant width-to-femoral neck diameter (W-D) ratios (30 %, 40 %, 50 %, and 60 %) on surgical outcomes. The results show that the risk of implant yield generally decreases with increasing W-D ratio, except for Patient P2, where the yield risk remained below 100 % across all ratios. The implant factor of safety (FoS) increased with larger W-D ratios, except for Patients P2 and P6, where the highest FoS was 2.60 (P2) and 0.49 (P6) at a 60 % W-D ratio. Bone-implant micromotion consistently remained below 40 µm at higher W-D ratios, with a 50 % W-D ratio striking the optimal balance for mechanical stability in all patients except P6. Although interfragmentary and principal femoral strains did not display consistent trends across all patients, they highlight the need for patient-specific approaches to ensure effective fracture healing. These findings highlight the importance of patient-specific considerations in implant selection, offering surgeons a more informed pathway to enhance patient outcomes and extend implant longevity. Additionally, the insights gained from this study provide valuable guidance for manufacturers in designing next-generation blade plates tailored to improve biomechanical performance in paediatric orthopaedics.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.