Evolution and functional implications of stinger shape in ants.

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY Evolution Pub Date : 2024-10-05 DOI:10.1093/evolut/qpae142
Alexandre Casadei-Ferreira, Gabriela Procópio Camacho, Thomas van de Kamp, John E Lattke, Rodrigo Machado Feitosa, Evan P Economo
{"title":"Evolution and functional implications of stinger shape in ants.","authors":"Alexandre Casadei-Ferreira, Gabriela Procópio Camacho, Thomas van de Kamp, John E Lattke, Rodrigo Machado Feitosa, Evan P Economo","doi":"10.1093/evolut/qpae142","DOIUrl":null,"url":null,"abstract":"<p><p>Trait diversification is often driven by underlying performance tradeoffs in the context of different selective pressures. Evolutionary changes in task specialization may influence how species respond to tradeoffs and alter diversification. We conducted this study to investigate the functional morphology, evolutionary history, and tempo and mode of evolution of the Hymenoptera stinger using Ectatomminae ants as a model clade. We hypothesized that a performance tradeoff surface underlies the diversity of stinger morphology and that shifts between predatory and omnivorous diets mediate the diversification dynamics of the trait. Shape variation was characterized by X-ray microtomography, and the correlation between shape and average values of von Mises stress, as a measure of yield failure criteria under loading conditions typical of puncture scenarios, was determined using finite element analysis. We observed that stinger elongation underlies most of the shape variation but found no evidence of biomechanical tradeoffs in the performance characteristics measured. Additionally, omnivores have increased phenotypic shifts and accelerated evolution in performance metrics, suggesting the evolution of dietary flexibility releases selection pressure on a specific function, resulting in a greater phenotypic evolutionary rate. These results increase our understanding of the biomechanical basis of stinger shape, indicate that shape diversity is not the outcome of simple biomechanical optimization, and reveal connections between diet and trait diversification.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpae142","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Trait diversification is often driven by underlying performance tradeoffs in the context of different selective pressures. Evolutionary changes in task specialization may influence how species respond to tradeoffs and alter diversification. We conducted this study to investigate the functional morphology, evolutionary history, and tempo and mode of evolution of the Hymenoptera stinger using Ectatomminae ants as a model clade. We hypothesized that a performance tradeoff surface underlies the diversity of stinger morphology and that shifts between predatory and omnivorous diets mediate the diversification dynamics of the trait. Shape variation was characterized by X-ray microtomography, and the correlation between shape and average values of von Mises stress, as a measure of yield failure criteria under loading conditions typical of puncture scenarios, was determined using finite element analysis. We observed that stinger elongation underlies most of the shape variation but found no evidence of biomechanical tradeoffs in the performance characteristics measured. Additionally, omnivores have increased phenotypic shifts and accelerated evolution in performance metrics, suggesting the evolution of dietary flexibility releases selection pressure on a specific function, resulting in a greater phenotypic evolutionary rate. These results increase our understanding of the biomechanical basis of stinger shape, indicate that shape diversity is not the outcome of simple biomechanical optimization, and reveal connections between diet and trait diversification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蚂蚁毒刺形状的进化和功能影响。
性状多样化通常是由不同选择压力下的潜在性能权衡驱动的。任务专业化的进化变化可能会影响物种如何应对权衡并改变多样化。我们进行了这项研究,以外蚁目蚂蚁为模式支系,调查膜翅目螫针的功能形态、进化历史、进化速度和模式。我们假设,螫针形态多样性的基础是一种性能权衡表面,而捕食性和杂食性之间的转变介导了该性状的多样化动态。我们用 X 射线显微层析技术描述了毒刺的形状变化,并用有限元分析确定了毒刺形状与 von Mises 应力平均值之间的相关性。我们观察到,毒刺的伸长是大部分形状变化的基础,但在测量的性能特征中没有发现生物力学折衷的证据。此外,杂食动物的表型变化增加,性能指标的进化加快,这表明饮食灵活性的进化释放了对特定功能的选择压力,导致表型进化速度加快。这些结果增加了我们对毒刺形状的生物力学基础的了解,表明形状多样性不是简单的生物力学优化的结果,并揭示了饮食与性状多样性之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
期刊最新文献
Extended phenotype affects somatic phenotype in spiders: web builders have lower estimated biting forces than free hunters. Rapid evolution of recombination landscapes during the divergence of cichlid ecotypes in Lake Masoko. Correlated evolution of categorical characters under a simple model. Selection on sporulation strategies in a metapopulation can lead to coexistence. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1