{"title":"Cerium oxide nanoparticles promoted lateral root formation in <i>Arabidopsis</i> by modulating reactive oxygen species and Ca<sup>2+</sup> level.","authors":"Guangjing Li, Quanlong Gao, Ashadu Nyande, Zihao Dong, Ehtisham Hassan Khan, Yuqian Han, Honghong Wu","doi":"10.1071/FP24196","DOIUrl":null,"url":null,"abstract":"<p><p>Roots play an important role in plant growth, including providing essential mechanical support, water uptake, and nutrient absorption. Nanomaterials play a positive role in improving plant root development, but there is limited knowledge of how nanomaterials affect lateral root (LR) formation. Poly (acrylic) acid coated nanoceria (cerium oxide nanoparticles, PNC) are commonly used to improve plant stress tolerance due to their ability to scavenge reactive oxygen species (ROS). However, its impact on LR formation remains unclear. In this study, we investigated the effects of PNC on LR formation in Arabidopsis thaliana by monitoring ROS levels and Ca2+ distribution in roots. Our results demonstrate that PNC significantly promote LR formation, increasing LR numbers by 26.2%. Compared to controls, PNC-treated Arabidopsis seedlings exhibited reduced H2 O2 levels by 18.9% in primary roots (PRs) and 40.6% in LRs, as well as decreased O 2 · - levels by 47.7% in PRs and 88.5% in LRs. When compared with control plants, Ca2+ levels were reduced by 35.7% in PRs and 22.7% in LRs of PNC-treated plants. Overall, these results indicate that PNC could enhance LR development by modulating ROS and Ca2+ levels in roots.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24196","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Roots play an important role in plant growth, including providing essential mechanical support, water uptake, and nutrient absorption. Nanomaterials play a positive role in improving plant root development, but there is limited knowledge of how nanomaterials affect lateral root (LR) formation. Poly (acrylic) acid coated nanoceria (cerium oxide nanoparticles, PNC) are commonly used to improve plant stress tolerance due to their ability to scavenge reactive oxygen species (ROS). However, its impact on LR formation remains unclear. In this study, we investigated the effects of PNC on LR formation in Arabidopsis thaliana by monitoring ROS levels and Ca2+ distribution in roots. Our results demonstrate that PNC significantly promote LR formation, increasing LR numbers by 26.2%. Compared to controls, PNC-treated Arabidopsis seedlings exhibited reduced H2 O2 levels by 18.9% in primary roots (PRs) and 40.6% in LRs, as well as decreased O 2 · - levels by 47.7% in PRs and 88.5% in LRs. When compared with control plants, Ca2+ levels were reduced by 35.7% in PRs and 22.7% in LRs of PNC-treated plants. Overall, these results indicate that PNC could enhance LR development by modulating ROS and Ca2+ levels in roots.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.