{"title":"Differential modulation of photosystem II photochemical efficiency in six C<sub>4</sub> xero-halophytes.","authors":"Ahmad Zia, Salman Gulzar, Gerald E Edwards","doi":"10.1071/FP24060","DOIUrl":null,"url":null,"abstract":"<p><p>Xero-halophytes are the salt-tolerant plants of dry habitats that adapt efficient strategies to endure extreme salt and water fluctuations. This study elucidated the adaptations related to PSII photochemistry, photoprotection, and photoinhibition in six C4 xero-halophytes (Atriplex stocksii , Haloxylon stocksii , Salsola imbricata, Suaeda fruticosa, Desmostachya bipinnata , and Saccharum griffithii ) grown in their native habitats. Chlorophyll a fluorescence quenching measurements suggested that S. imbricata and H. stocksii maintained efficient PSII photochemistry by downregulating heat dissipation and keeping a high fraction of open PSII centres that indicates plastoquinone (PQ) pool oxidation. Fluorescence induction kinetics revealed that S. imbricata demonstrated the highest performance index of PSII excitation to the reduction of end electron acceptors. S. fruticosa sustained photochemical efficiency through enhanced dissipation of excess energy and a low fraction of open PSII centres, indicating PQ reduced state. The large light-harvesting antenna size, deduced from the chlorophyll a /b ratio in S. fruticosa apparently led to the superior performance index of PSII excitation to the reduction of intersystem electron carriers. A. stocksii retained more open PSII centres with responsive non-photochemical quenching to safely dissipate excess energy. Despite maintaining the highest pigment contents and stoichiometry, A. stocksii remained lowest in both performance indices. The grass species D. bipinnata and S. griffithii kept fewer PSII centres open during photoinhibition, as evidenced by downregulation of PSII operating efficiency. The results provide insights into the differential modulation of PSII photochemical efficiency through dynamic control of photoprotective energy dissipation, PQ pool redox states, and photoinhibitory shutdown in these xero-halophytes.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24060","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Xero-halophytes are the salt-tolerant plants of dry habitats that adapt efficient strategies to endure extreme salt and water fluctuations. This study elucidated the adaptations related to PSII photochemistry, photoprotection, and photoinhibition in six C4 xero-halophytes (Atriplex stocksii , Haloxylon stocksii , Salsola imbricata, Suaeda fruticosa, Desmostachya bipinnata , and Saccharum griffithii ) grown in their native habitats. Chlorophyll a fluorescence quenching measurements suggested that S. imbricata and H. stocksii maintained efficient PSII photochemistry by downregulating heat dissipation and keeping a high fraction of open PSII centres that indicates plastoquinone (PQ) pool oxidation. Fluorescence induction kinetics revealed that S. imbricata demonstrated the highest performance index of PSII excitation to the reduction of end electron acceptors. S. fruticosa sustained photochemical efficiency through enhanced dissipation of excess energy and a low fraction of open PSII centres, indicating PQ reduced state. The large light-harvesting antenna size, deduced from the chlorophyll a /b ratio in S. fruticosa apparently led to the superior performance index of PSII excitation to the reduction of intersystem electron carriers. A. stocksii retained more open PSII centres with responsive non-photochemical quenching to safely dissipate excess energy. Despite maintaining the highest pigment contents and stoichiometry, A. stocksii remained lowest in both performance indices. The grass species D. bipinnata and S. griffithii kept fewer PSII centres open during photoinhibition, as evidenced by downregulation of PSII operating efficiency. The results provide insights into the differential modulation of PSII photochemical efficiency through dynamic control of photoprotective energy dissipation, PQ pool redox states, and photoinhibitory shutdown in these xero-halophytes.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.