Differential modulation of photosystem II photochemical efficiency in six C4 xero-halophytes.

IF 2.6 4区 生物学 Q2 PLANT SCIENCES Functional Plant Biology Pub Date : 2024-10-01 DOI:10.1071/FP24060
Ahmad Zia, Salman Gulzar, Gerald E Edwards
{"title":"Differential modulation of photosystem II photochemical efficiency in six C<sub>4</sub> xero-halophytes.","authors":"Ahmad Zia, Salman Gulzar, Gerald E Edwards","doi":"10.1071/FP24060","DOIUrl":null,"url":null,"abstract":"<p><p>Xero-halophytes are the salt-tolerant plants of dry habitats that adapt efficient strategies to endure extreme salt and water fluctuations. This study elucidated the adaptations related to PSII photochemistry, photoprotection, and photoinhibition in six C4 xero-halophytes (Atriplex stocksii , Haloxylon stocksii , Salsola imbricata, Suaeda fruticosa, Desmostachya bipinnata , and Saccharum griffithii ) grown in their native habitats. Chlorophyll a fluorescence quenching measurements suggested that S. imbricata and H. stocksii maintained efficient PSII photochemistry by downregulating heat dissipation and keeping a high fraction of open PSII centres that indicates plastoquinone (PQ) pool oxidation. Fluorescence induction kinetics revealed that S. imbricata demonstrated the highest performance index of PSII excitation to the reduction of end electron acceptors. S. fruticosa sustained photochemical efficiency through enhanced dissipation of excess energy and a low fraction of open PSII centres, indicating PQ reduced state. The large light-harvesting antenna size, deduced from the chlorophyll a /b ratio in S. fruticosa apparently led to the superior performance index of PSII excitation to the reduction of intersystem electron carriers. A. stocksii retained more open PSII centres with responsive non-photochemical quenching to safely dissipate excess energy. Despite maintaining the highest pigment contents and stoichiometry, A. stocksii remained lowest in both performance indices. The grass species D. bipinnata and S. griffithii kept fewer PSII centres open during photoinhibition, as evidenced by downregulation of PSII operating efficiency. The results provide insights into the differential modulation of PSII photochemical efficiency through dynamic control of photoprotective energy dissipation, PQ pool redox states, and photoinhibitory shutdown in these xero-halophytes.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24060","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Xero-halophytes are the salt-tolerant plants of dry habitats that adapt efficient strategies to endure extreme salt and water fluctuations. This study elucidated the adaptations related to PSII photochemistry, photoprotection, and photoinhibition in six C4 xero-halophytes (Atriplex stocksii , Haloxylon stocksii , Salsola imbricata, Suaeda fruticosa, Desmostachya bipinnata , and Saccharum griffithii ) grown in their native habitats. Chlorophyll a fluorescence quenching measurements suggested that S. imbricata and H. stocksii maintained efficient PSII photochemistry by downregulating heat dissipation and keeping a high fraction of open PSII centres that indicates plastoquinone (PQ) pool oxidation. Fluorescence induction kinetics revealed that S. imbricata demonstrated the highest performance index of PSII excitation to the reduction of end electron acceptors. S. fruticosa sustained photochemical efficiency through enhanced dissipation of excess energy and a low fraction of open PSII centres, indicating PQ reduced state. The large light-harvesting antenna size, deduced from the chlorophyll a /b ratio in S. fruticosa apparently led to the superior performance index of PSII excitation to the reduction of intersystem electron carriers. A. stocksii retained more open PSII centres with responsive non-photochemical quenching to safely dissipate excess energy. Despite maintaining the highest pigment contents and stoichiometry, A. stocksii remained lowest in both performance indices. The grass species D. bipinnata and S. griffithii kept fewer PSII centres open during photoinhibition, as evidenced by downregulation of PSII operating efficiency. The results provide insights into the differential modulation of PSII photochemical efficiency through dynamic control of photoprotective energy dissipation, PQ pool redox states, and photoinhibitory shutdown in these xero-halophytes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
六种 C4 旱生高叶植物光系统 II 光化学效率的差异调节。
干旱半干旱植物是干旱生境中的耐盐植物,它们采用有效的策略来忍受极端的盐分和水分波动。本研究阐明了生长在原生境的六种 C4 旱生高叶植物(Atriplex stockii、Haloxylon stockii、Salsola imbricata、Suaeda fruticosa、Desmostachya bipinnata 和 Saccharum griffithii)在 PSII 光化学、光保护和光抑制方面的适应性。叶绿素 a 荧光淬灭测量结果表明,S. imbricata 和 H. stockii 通过降低散热调节和保持高比例的开放 PSII 中心(表明质醌(PQ)池氧化)来维持高效的 PSII 光化学。荧光诱导动力学显示,S. imbricata 的 PSII 激发到末端电子受体还原的性能指数最高。S.fruticosa通过增强多余能量的耗散和较低比例的开放式PSII中心(表明PQ还原状态)来维持光化学效率。根据 S. fruticosa 的叶绿素 a /b 比率推断,其采光天线尺寸较大,这显然导致 PSII 激发系统间电子载体还原的性能指标较高。A. stockii 保留了更多开放的 PSII 中心,具有反应灵敏的非光化学淬灭功能,可以安全地耗散多余的能量。尽管 A. stockii 保持了最高的色素含量和化学计量,但其两项性能指标仍然最低。禾本科物种 D. bipinnata 和 S. griffithii 在光抑制期间保持开放的 PSII 中心较少,PSII 运行效率的下调证明了这一点。这些结果提供了通过动态控制光保护能量耗散、PQ池氧化还原状态和光抑制关闭,对PSII光化学效率进行不同调节的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Functional Plant Biology
Functional Plant Biology 生物-植物科学
CiteScore
5.50
自引率
3.30%
发文量
156
审稿时长
1 months
期刊介绍: Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance. Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science. Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.
期刊最新文献
Evaluating non-photochemical quenching (NPQ) kinetics and photosynthetic efficiency in cassava (Manihot esculenta) subjected to variable high light conditions. Foliar-applied silicon and zinc nanoparticles improve plant growth, biochemical attributes, and essential oil profile of fennel (Foeniculum vulgare) under different irrigation regimes. Cerium oxide nanoparticles promoted lateral root formation in Arabidopsis by modulating reactive oxygen species and Ca2+ level. Differential modulation of photosystem II photochemical efficiency in six C4 xero-halophytes. Alteration in certain growth, biochemical, and anatomical indices of grapevine (Vitis vinifera) in response to the foliar application of auxin under water deficit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1