Super-resolution microscopy unveils the nanoscale organization and self-limiting clustering of CD47 in human erythrocytes.

IF 5.3 2区 生物学 Q2 CELL BIOLOGY Journal of Molecular Cell Biology Pub Date : 2024-10-04 DOI:10.1093/jmcb/mjae041
Jianyu Yang, Fulin Xing, Fen Hu, Mengdi Hou, Hao Dong, Jiayu Cheng, Wan Li, Rui Yan, Jingjun Xu, Ke Xu, Leiting Pan
{"title":"Super-resolution microscopy unveils the nanoscale organization and self-limiting clustering of CD47 in human erythrocytes.","authors":"Jianyu Yang, Fulin Xing, Fen Hu, Mengdi Hou, Hao Dong, Jiayu Cheng, Wan Li, Rui Yan, Jingjun Xu, Ke Xu, Leiting Pan","doi":"10.1093/jmcb/mjae041","DOIUrl":null,"url":null,"abstract":"<p><p>The transmembrane protein CD47, an innate immune checkpoint protein, plays a pivotal role in preventing healthy erythrocytes from immune clearance. Our study utilized stochastic optical-reconstruction microscopy (STORM) and single-molecule analysis to investigate the distribution of CD47 on the human erythrocyte membrane. Contrary to previous findings in mouse erythrocytes, we discovered that CD47 exists in randomly distributed monomers rather than in clusters across the human erythrocyte membrane. Using 2nd antibody-induced crosslinking, we found that CD47 aggregates into stable clusters within minutes. By comparing these STORM results with those of the fully mobile protein CD59 and the cytoskeleton-bound membrane protein glycophorin C under similar conditions, as well as devising two-color STORM co-labeling and co-clustering experiments, we further quantitatively revealed an intermediate, self-limiting clustering behavior of CD47, elucidating its fractional (∼14%) attachment to the cytoskeleton. Moreover, we report reductions in both the amount of CD47 and its clustering capability in aged erythrocytes, providing new insight into erythrocyte senescence. Together, the combination of STORM and 2nd antibody-based crosslinking unveils the unique self-limiting clustering behavior of CD47 due to its fractional cytoskeleton attachment.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjae041","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The transmembrane protein CD47, an innate immune checkpoint protein, plays a pivotal role in preventing healthy erythrocytes from immune clearance. Our study utilized stochastic optical-reconstruction microscopy (STORM) and single-molecule analysis to investigate the distribution of CD47 on the human erythrocyte membrane. Contrary to previous findings in mouse erythrocytes, we discovered that CD47 exists in randomly distributed monomers rather than in clusters across the human erythrocyte membrane. Using 2nd antibody-induced crosslinking, we found that CD47 aggregates into stable clusters within minutes. By comparing these STORM results with those of the fully mobile protein CD59 and the cytoskeleton-bound membrane protein glycophorin C under similar conditions, as well as devising two-color STORM co-labeling and co-clustering experiments, we further quantitatively revealed an intermediate, self-limiting clustering behavior of CD47, elucidating its fractional (∼14%) attachment to the cytoskeleton. Moreover, we report reductions in both the amount of CD47 and its clustering capability in aged erythrocytes, providing new insight into erythrocyte senescence. Together, the combination of STORM and 2nd antibody-based crosslinking unveils the unique self-limiting clustering behavior of CD47 due to its fractional cytoskeleton attachment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超分辨率显微镜揭示了人类红细胞中 CD47 的纳米级组织和自限性聚类。
跨膜蛋白 CD47 是一种先天性免疫检查点蛋白,在阻止健康红细胞被免疫清除方面发挥着关键作用。我们的研究利用随机光学重建显微镜(STORM)和单分子分析来研究 CD47 在人类红细胞膜上的分布。与之前在小鼠红细胞膜上的发现相反,我们发现 CD47 在人红细胞膜上以随机分布的单体形式存在,而不是以团簇形式存在。利用第二抗体诱导交联,我们发现 CD47 在几分钟内就聚集成稳定的团块。通过将这些 STORM 结果与完全移动蛋白 CD59 和细胞骨架结合膜蛋白糖蛋白 C 在类似条件下的结果进行比较,以及设计双色 STORM 共标记和共聚簇实验,我们进一步定量揭示了 CD47 的中间自我限制聚簇行为,阐明了它与细胞骨架的部分(∼14%)附着。此外,我们还报告了老化红细胞中 CD47 数量及其聚类能力的降低,为红细胞衰老提供了新的视角。结合 STORM 和基于第二抗体的交联,我们揭示了 CD47 因其部分细胞骨架附着而产生的独特的自限性聚类行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
期刊最新文献
Gender differences in the health workforce in China: an analysis of national data. Super-resolution microscopy unveils the nanoscale organization and self-limiting clustering of CD47 in human erythrocytes. Hypoxia signaling in the adipose tissue. ATP promotes protein coacervation through conformational compaction. HIV-1 inhibits IFITM3 expression to promote the infection of megakaryocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1