Isotopic steady state or non-steady state transpiration? Insights from whole-tree chambers.

IF 3.5 2区 农林科学 Q1 FORESTRY Tree physiology Pub Date : 2024-11-05 DOI:10.1093/treephys/tpae125
Richard Harwood, Lucas A Cernusak, John E Drake, Craig V M Barton, Mark G Tjoelker, Margaret M Barbour
{"title":"Isotopic steady state or non-steady state transpiration? Insights from whole-tree chambers.","authors":"Richard Harwood, Lucas A Cernusak, John E Drake, Craig V M Barton, Mark G Tjoelker, Margaret M Barbour","doi":"10.1093/treephys/tpae125","DOIUrl":null,"url":null,"abstract":"<p><p>Unravelling the complexities of transpiration can be assisted by understanding the oxygen isotope composition of transpired water vapour (δE). It is often assumed that δE is at steady state, thereby mirroring the oxygen isotope composition of source water (δsource), but this assumption has never been tested at the whole-tree scale. This study utilized the unique infrastructure of 12 whole-tree chambers enclosing Eucalyptus parramattensis E.C.Hall trees to measure δE along with concurrent temperature and gas exchange data. Six chambers tracked ambient air temperature and six were exposed to an ambient +3 °C warming treatment. Day time means for δE were within 1.2‰ of δsource (-3.3‰) but varied considerably throughout the day. Our observations show that E. parramattensis trees are seldom transpiring at isotopic steady state over a diel period, but transpiration approaches source water isotopic composition over longer time periods.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555434/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpae125","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Unravelling the complexities of transpiration can be assisted by understanding the oxygen isotope composition of transpired water vapour (δE). It is often assumed that δE is at steady state, thereby mirroring the oxygen isotope composition of source water (δsource), but this assumption has never been tested at the whole-tree scale. This study utilized the unique infrastructure of 12 whole-tree chambers enclosing Eucalyptus parramattensis E.C.Hall trees to measure δE along with concurrent temperature and gas exchange data. Six chambers tracked ambient air temperature and six were exposed to an ambient +3 °C warming treatment. Day time means for δE were within 1.2‰ of δsource (-3.3‰) but varied considerably throughout the day. Our observations show that E. parramattensis trees are seldom transpiring at isotopic steady state over a diel period, but transpiration approaches source water isotopic composition over longer time periods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同位素稳态或非稳态蒸腾作用?来自整棵树腔室的启示
了解蒸腾水蒸气的氧同位素组成(δE)有助于揭示蒸腾作用的复杂性。人们通常假设δE处于稳定状态,从而反映了源水(δsource)的氧同位素组成,但这一假设从未在整棵树的尺度上进行过测试。这项研究利用了 12 个全树室(WTC)的独特基础设施,将桉树围在其中,测量δE 以及同期的温度和气体交换数据。六个试验室跟踪环境气温,六个试验室暴露于+3 °C的环境升温处理中。δE的日平均值在δ源(-3.3‰)的1.2‰以内,但全天变化很大。我们的观察结果表明,桉树的蒸腾作用很少在一天中处于同位素稳定状态,但蒸腾作用会在较长时间内接近源水的同位素组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tree physiology
Tree physiology 农林科学-林学
CiteScore
7.10
自引率
7.50%
发文量
133
审稿时长
1 months
期刊介绍: Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.
期刊最新文献
CsCBF2 contributes to cold repression of chlorophyll and carotenoid biosynthesis in albino Camellia sinensis cv. Baiye 1. Uncovering protein regulation during adventitious root formation in Platycladus orientalis cuttings. Changes in morphological and physiological traits of urban trees in response to elevated temperatures within an Urban Heat Islands. Hydraulic and structural traits of trees across light gradients in the Amazon secondary forest. Variance and variability in Tree Physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1