Fuduo He, Yi Tan, Xiaohou Zhou, Tao Luo, Zhenjuan Yan, Dehua Xu, Xinlong Wang
{"title":"In-situ production of amino acid-rich monoammonium phosphate from chicken feathers provides superior efficacy compared to physical blending","authors":"Fuduo He, Yi Tan, Xiaohou Zhou, Tao Luo, Zhenjuan Yan, Dehua Xu, Xinlong Wang","doi":"10.1016/j.wasman.2024.09.030","DOIUrl":null,"url":null,"abstract":"<div><div>A large amount of feather waste is discarded annually, leading to severe environmental pollution problems. Meanwhile, to improve the utilization efficiency of phosphate fertilizers, this study utilized wet-process phosphoric acid (WPPA) to hydrolyze feathers in-situ, producing ammonium amino acid phosphate (AAMAP), and set up physically mixed ammonium phosphate (ARMAP) as a control. The application effects of AAMAP and ARMAP produced under different conditions on bok choy growth were investigated. The results showed that AAMAP consistently outperformed ARMAP in promoting yield, with fresh weight and dry weight increases ranging from 1.38 % to 26.06 % and 5.69 % to 20.67 %, respectively. Among all treatments, the AAMAP (150 g/L-3) group was the most effective, increasing fresh weight and dry weight by 37.13 % and 46.13 % compared to the blank control group. Analysis revealed that the superior application effect of AAMAP was attributed to the elimination of the water-insoluble NH<sub>4</sub>MgPO<sub>4</sub>·H<sub>2</sub>O crystals due to amino acid chelation, leading to improved phosphorus and magnesium utilization, as well as the formation of phosphoesters. Furthermore, economic analysis showed that the addition cost of AAMAP was only 28.52 % of ARMAP. This method of utilizing WPPA to hydrolyze feathers in-situ for AAMAP production is an economical and effective approach to treat feather waste and enhance the utilization efficiency of phosphate fertilizers.</div></div>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"190 ","pages":"Pages 273-284"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956053X24005178","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
A large amount of feather waste is discarded annually, leading to severe environmental pollution problems. Meanwhile, to improve the utilization efficiency of phosphate fertilizers, this study utilized wet-process phosphoric acid (WPPA) to hydrolyze feathers in-situ, producing ammonium amino acid phosphate (AAMAP), and set up physically mixed ammonium phosphate (ARMAP) as a control. The application effects of AAMAP and ARMAP produced under different conditions on bok choy growth were investigated. The results showed that AAMAP consistently outperformed ARMAP in promoting yield, with fresh weight and dry weight increases ranging from 1.38 % to 26.06 % and 5.69 % to 20.67 %, respectively. Among all treatments, the AAMAP (150 g/L-3) group was the most effective, increasing fresh weight and dry weight by 37.13 % and 46.13 % compared to the blank control group. Analysis revealed that the superior application effect of AAMAP was attributed to the elimination of the water-insoluble NH4MgPO4·H2O crystals due to amino acid chelation, leading to improved phosphorus and magnesium utilization, as well as the formation of phosphoesters. Furthermore, economic analysis showed that the addition cost of AAMAP was only 28.52 % of ARMAP. This method of utilizing WPPA to hydrolyze feathers in-situ for AAMAP production is an economical and effective approach to treat feather waste and enhance the utilization efficiency of phosphate fertilizers.
期刊介绍:
Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes.
Scope:
Addresses solid wastes in both industrialized and economically developing countries
Covers various types of solid wastes, including:
Municipal (e.g., residential, institutional, commercial, light industrial)
Agricultural
Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)