Sliding Mode Control for Robust Path Tracking of Automated Vehicles in Rural Environments

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2024-09-09 DOI:10.1109/OJVT.2024.3456035
Jose Matute;Sergio Diaz;Ali Karimoddini
{"title":"Sliding Mode Control for Robust Path Tracking of Automated Vehicles in Rural Environments","authors":"Jose Matute;Sergio Diaz;Ali Karimoddini","doi":"10.1109/OJVT.2024.3456035","DOIUrl":null,"url":null,"abstract":"Achieving robust path tracking is essential for efficiently operating autonomous driving systems, particularly in unpredictable environments. This paper introduces a novel path-tracking control methodology utilizing a variable second-order Sliding Mode Control (SMC) approach. The proposed control strategy addresses the challenges posed by uncertainties and disturbances by reconfiguring and expanding the state-space matrix of a kinematic bicycle model guaranteeing Lyapunov stability and convergence of the system. A state prediction is integrated into the developed SMC to mitigate response time delays. Furthermore, the controller integrates adaptive mechanisms to adjust time-varying parameters within the control formulation based on longitudinal velocity, thereby enhancing path-tracking performance and reducing chattering phenomena. The effectiveness of the proposed approach is comprehensively evaluated through simulations and experiments encompassing challenging driving scenarios characterized by high-curvature paths, varying altitudes, and sensor disturbances, typical in rural driving environments. Results demonstrate that disturbances have varying impacts depending on the type of sensor affected. Real-world tests validate these findings, offering practical insights for automated vehicle path-tracking implementation.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669799","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10669799/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving robust path tracking is essential for efficiently operating autonomous driving systems, particularly in unpredictable environments. This paper introduces a novel path-tracking control methodology utilizing a variable second-order Sliding Mode Control (SMC) approach. The proposed control strategy addresses the challenges posed by uncertainties and disturbances by reconfiguring and expanding the state-space matrix of a kinematic bicycle model guaranteeing Lyapunov stability and convergence of the system. A state prediction is integrated into the developed SMC to mitigate response time delays. Furthermore, the controller integrates adaptive mechanisms to adjust time-varying parameters within the control formulation based on longitudinal velocity, thereby enhancing path-tracking performance and reducing chattering phenomena. The effectiveness of the proposed approach is comprehensively evaluated through simulations and experiments encompassing challenging driving scenarios characterized by high-curvature paths, varying altitudes, and sensor disturbances, typical in rural driving environments. Results demonstrate that disturbances have varying impacts depending on the type of sensor affected. Real-world tests validate these findings, offering practical insights for automated vehicle path-tracking implementation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
农村环境中自动驾驶汽车鲁棒路径跟踪的滑模控制
实现稳健的路径跟踪对于高效运行自动驾驶系统至关重要,尤其是在不可预测的环境中。本文介绍了一种利用可变二阶滑模控制(SMC)方法的新型路径跟踪控制方法。所提出的控制策略通过重新配置和扩展自行车运动学模型的状态空间矩阵,保证了系统的 Lyapunov 稳定性和收敛性,从而应对了不确定性和干扰带来的挑战。所开发的 SMC 中集成了状态预测功能,以减少响应时间延迟。此外,控制器还集成了自适应机制,可根据纵向速度调整控制公式中的时变参数,从而提高路径跟踪性能并减少颤振现象。通过模拟和实验全面评估了所提方法的有效性,包括具有挑战性的驾驶场景,其特点是高曲率路径、不同海拔高度和传感器干扰(典型的农村驾驶环境)。结果表明,干扰会根据受影响传感器的类型产生不同的影响。实际测试验证了这些发现,为自动驾驶车辆路径跟踪的实施提供了实用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
Digital Twin-Empowered Green Mobility Management in Next-Gen Transportation Networks Fairness-Aware Utility Maximization for Multi-UAV-Aided Terrestrial Networks LiFi for Industry 4.0: Main Features, Implementation and Initial Testing of IEEE Std 802.15.13 Partial Learning-Based Iterative Detection of MIMO Systems Decentralized and Asymmetric Multi-Agent Learning in Construction Sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1