{"title":"PATReId: Pose Apprise Transformer Network for Vehicle Re-Identification","authors":"Rishi Kishore;Nazia Aslam;Maheshkumar H. Kolekar","doi":"10.1109/TETCI.2024.3372391","DOIUrl":null,"url":null,"abstract":"Vehicle re-identification is a procedure for identifying a vehicle using multiple non-overlapping cameras. The use of licence plates for re-identification have constraints because a licence plates may not be seen owing to viewpoint differences. Also, the high intra-class variability (due to the shape and appearance from different angles) and small inter-class variability (due to the similarity in appearance and shapes of vehicles from different manufacturers) make it more challenging. To address these issues, we have proposed a novel PATReId, Pose Apprise Transformer network for Vehicle Re-identification. This network works two-fold: 1) generating the poses of the vehicles using the heatmap, keypoints, and segments, which eliminate the viewpoint dependencies, and 2) jointly classify the attributes of the vehicles (colour and type) while performing ReId by utilizing the multitask learning through a two-stream neural network-integrated with the pose. The vision transformer and ResNet50 networks are employed to create the two-stream neural network. Extensive experiments have been conducted on Veri776, VehicleID and Veri Wild datasets to demonstrate the accuracy and efficacy of the proposed PATReId framework.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3691-3702"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10472625/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Vehicle re-identification is a procedure for identifying a vehicle using multiple non-overlapping cameras. The use of licence plates for re-identification have constraints because a licence plates may not be seen owing to viewpoint differences. Also, the high intra-class variability (due to the shape and appearance from different angles) and small inter-class variability (due to the similarity in appearance and shapes of vehicles from different manufacturers) make it more challenging. To address these issues, we have proposed a novel PATReId, Pose Apprise Transformer network for Vehicle Re-identification. This network works two-fold: 1) generating the poses of the vehicles using the heatmap, keypoints, and segments, which eliminate the viewpoint dependencies, and 2) jointly classify the attributes of the vehicles (colour and type) while performing ReId by utilizing the multitask learning through a two-stream neural network-integrated with the pose. The vision transformer and ResNet50 networks are employed to create the two-stream neural network. Extensive experiments have been conducted on Veri776, VehicleID and Veri Wild datasets to demonstrate the accuracy and efficacy of the proposed PATReId framework.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.