Unraveling the electronic structure and magnetic transition evolution across monolayer, bilayer, and multilayer ferromagnetic Fe3GeTe2

IF 9.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY npj 2D Materials and Applications Pub Date : 2024-09-30 DOI:10.1038/s41699-024-00499-0
R. Roemer, D. H. D. Lee, S. Smit, X. Zhang, S. Godin, V. Hamza, T. Jian, J. Larkin, H. Shin, C. Liu, M. Michiardi, G. Levy, Z. Zhang, R. J. Green, C. Kim, D. Muller, A. Damascelli, M. J. Han, K. Zou
{"title":"Unraveling the electronic structure and magnetic transition evolution across monolayer, bilayer, and multilayer ferromagnetic Fe3GeTe2","authors":"R. Roemer, D. H. D. Lee, S. Smit, X. Zhang, S. Godin, V. Hamza, T. Jian, J. Larkin, H. Shin, C. Liu, M. Michiardi, G. Levy, Z. Zhang, R. J. Green, C. Kim, D. Muller, A. Damascelli, M. J. Han, K. Zou","doi":"10.1038/s41699-024-00499-0","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) van der Waals (vdW) magnets have sparked widespread attention due to their potential in spintronic applications as well as in fundamental physics. Ferromagnetic vdW compound Fe3GeTe2 (FGT) and its Ga variants have garnered significant interest due to their itinerant magnetism, correlated states, and high magnetic transition temperature. Experimental studies have demonstrated the tunability of FGT’s Curie temperature, TC, through adjustments in quintuple layer numbers (QL) and carrier concentrations, n. However, the underlying mechanism remains elusive. In this study, we employ molecular beam epitaxy (MBE) to synthesize 2D FGT films down to 1 QL with precise layer control, facilitating an exploration of the band structure and the evolution of itinerant carrier density. Angle-resolved photoemission spectroscopy (ARPES) reveals significant band structure changes at the ultra-thin limit, while first-principles calculations elucidate the band evolution from 1 QL to bulk, largely governed by interlayer coupling. Additionally, we find that n is intrinsically linked to the number of QL and temperature, with a critical value triggering the magnetic phase transition. Our findings underscore the pivotal role of band structure and itinerant electrons in governing magnetic phase transitions in such 2D vdW magnetic materials.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-8"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00499-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00499-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) van der Waals (vdW) magnets have sparked widespread attention due to their potential in spintronic applications as well as in fundamental physics. Ferromagnetic vdW compound Fe3GeTe2 (FGT) and its Ga variants have garnered significant interest due to their itinerant magnetism, correlated states, and high magnetic transition temperature. Experimental studies have demonstrated the tunability of FGT’s Curie temperature, TC, through adjustments in quintuple layer numbers (QL) and carrier concentrations, n. However, the underlying mechanism remains elusive. In this study, we employ molecular beam epitaxy (MBE) to synthesize 2D FGT films down to 1 QL with precise layer control, facilitating an exploration of the band structure and the evolution of itinerant carrier density. Angle-resolved photoemission spectroscopy (ARPES) reveals significant band structure changes at the ultra-thin limit, while first-principles calculations elucidate the band evolution from 1 QL to bulk, largely governed by interlayer coupling. Additionally, we find that n is intrinsically linked to the number of QL and temperature, with a critical value triggering the magnetic phase transition. Our findings underscore the pivotal role of band structure and itinerant electrons in governing magnetic phase transitions in such 2D vdW magnetic materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示单层、双层和多层铁磁性 Fe3GeTe2 的电子结构和磁转变演化
二维范德华(vdW)磁体因其在自旋电子应用和基础物理学中的潜力而引发广泛关注。铁磁性 vdW 化合物 Fe3GeTe2(FGT)及其 Ga 变体因其巡回磁性、相关态和高磁转变温度而备受关注。实验研究已经证明,通过调整五倍层数(QL)和载流子浓度(n),FGT 的居里温度 TC 是可调的。在本研究中,我们采用分子束外延 (MBE) 技术合成了二维 FGT 薄膜,层数控制精确到 1 QL,从而促进了对带状结构和巡回载流子密度演化的探索。角度分辨光发射光谱 (ARPES) 揭示了超薄极限下显著的能带结构变化,而第一原理计算则阐明了从 1 QL 到大块的能带演化,这在很大程度上受层间耦合的影响。此外,我们还发现 n 与 QL 数量和温度有内在联系,临界值会触发磁性相变。我们的研究结果强调了带状结构和巡回电子在这种二维 vdW 磁性材料的磁性相变中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj 2D Materials and Applications
npj 2D Materials and Applications Engineering-Mechanics of Materials
CiteScore
14.50
自引率
2.10%
发文量
80
审稿时长
15 weeks
期刊介绍: npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.
期刊最新文献
Revealing stacking order transition via nanomechanical resonator Controlled layer-by-layer assembly and structured coloration of Ti3C2Tz MXene/polyelectrolyte heterostructures Solution-processable 2D materials for monolithic 3D memory-sensing-computing platforms: opportunities and challenges Light-driven electrodynamics and demagnetization in FenGeTe2 (n = 3, 5) thin films Achieving nearly barrier free transport in high mobility ReS2 phototransistors with van der Waals contacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1