{"title":"Crystal structure, sintering behavior, and microwave dielectric properties of LiF-tailored high entropy Li2Mg6ZnTi6O20 ceramics","authors":"Qianbiao Du, Linzhao Ma, Jianhong Duan, Longxiang Jiang, Hao Li, Hanning Xiao","doi":"10.1016/j.jmst.2024.09.024","DOIUrl":null,"url":null,"abstract":"This study designs and synthesizes highly dense Li<sub>2</sub>Mg<sub>6</sub>ZnTi<sub>6</sub>O<sub>20</sub> microwave dielectric ceramics based on a high-entropy strategy, focusing on achieving stable structures, low sintering temperatures, and excellent comprehensive performance. The ceramics exhibit a predominant face-centered cubic disordered phase (<em>Fd</em>-3<em>m</em>) sintered at 1200–1280°C, alongside an increased presence of the second phase MgTiO<sub>3</sub> at higher temperatures. Remarkably, these ceramics demonstrate excellent microwave dielectric properties (<em>ε</em><sub>r</sub> = 16.69, <em>Q</em> × <em>f</em> = 88,230 GHz, and <em>τ</em><sub>f</sub> = −36.5 ppm/°C). Additionally, we have explored the addition of <em>x</em> wt% LiF (1 ≤ <em>x</em> ≤ 5) to the Li<sub>2</sub>Mg<sub>6</sub>ZnTi<sub>6</sub>O<sub>20</sub> ceramics to enhance their applicability. The ceramics feature a spinel structure for LiF contents up to 3 wt%, while higher LiF concentrations induce the formation of a secondary phase, LiTiO<sub>2</sub>, characterized by a rock salt structure. Notably, the lattice distortion induced by LiF leads to a constant decrease in <em>ε</em><sub>r</sub>. A moderate degree of lattice distortion serves to enhance the lattice stability of ceramics, which is reflected in increased lattice energy. Excellent microwave dielectric properties (<em>ε</em><sub>r</sub> = 16.23, <em>Q</em> × <em>f</em> = 89,728 GHz, <em>τ</em><sub>f</sub> = −43.5 ppm/°C) were obtained for <em>x</em> = 3 ceramic sintered at 1140°C. Even at <em>x</em> = 5, the ceramic retains excellent microwave dielectric properties (<em>ε</em><sub>r</sub> = 16.02, <em>Q</em> × <em>f</em> = 63,079 GHz, <em>τ</em><sub>f</sub> = −26 ppm/°C) at a low sintering temperature of 900°C. This work realizes the multiple effects of LiF and confirms good chemical compatibility with silver for LTCC (low-temperature co-fired ceramics) applications.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"7 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.09.024","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study designs and synthesizes highly dense Li2Mg6ZnTi6O20 microwave dielectric ceramics based on a high-entropy strategy, focusing on achieving stable structures, low sintering temperatures, and excellent comprehensive performance. The ceramics exhibit a predominant face-centered cubic disordered phase (Fd-3m) sintered at 1200–1280°C, alongside an increased presence of the second phase MgTiO3 at higher temperatures. Remarkably, these ceramics demonstrate excellent microwave dielectric properties (εr = 16.69, Q × f = 88,230 GHz, and τf = −36.5 ppm/°C). Additionally, we have explored the addition of x wt% LiF (1 ≤ x ≤ 5) to the Li2Mg6ZnTi6O20 ceramics to enhance their applicability. The ceramics feature a spinel structure for LiF contents up to 3 wt%, while higher LiF concentrations induce the formation of a secondary phase, LiTiO2, characterized by a rock salt structure. Notably, the lattice distortion induced by LiF leads to a constant decrease in εr. A moderate degree of lattice distortion serves to enhance the lattice stability of ceramics, which is reflected in increased lattice energy. Excellent microwave dielectric properties (εr = 16.23, Q × f = 89,728 GHz, τf = −43.5 ppm/°C) were obtained for x = 3 ceramic sintered at 1140°C. Even at x = 5, the ceramic retains excellent microwave dielectric properties (εr = 16.02, Q × f = 63,079 GHz, τf = −26 ppm/°C) at a low sintering temperature of 900°C. This work realizes the multiple effects of LiF and confirms good chemical compatibility with silver for LTCC (low-temperature co-fired ceramics) applications.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.