Leila Prelat, Eduardo J. C. Dias, F. Javier García de Abajo
{"title":"Free-electron coupling to surface polaritons mediated by small scatterers","authors":"Leila Prelat, Eduardo J. C. Dias, F. Javier García de Abajo","doi":"10.1515/nanoph-2024-0326","DOIUrl":null,"url":null,"abstract":"The ability of surface polaritons (SPs) to enhance and manipulate light fields down to deep-subwavelength length scales enables applications in optical sensing and nonlinear optics at the nanoscale. However, the wavelength mismatch between light and SPs prevents direct optical excitation of surface-bound modes, thereby limiting the widespread development of SP-based photonics. Free electrons are a natural choice to directly excite strongly confined SPs because they can supply field components of high momentum at designated positions with subnanometer precision. Here, we theoretically explore free-electron–SP coupling mediated by small scatterers and show that low-energy electrons can efficiently excite surface modes with a maximum probability reached at an optimum surface–scatterer distance. By aligning the electron beam with a periodic array of scatterers placed near a polariton-supporting interface, in-plane Smith–Purcell emission results in the excitation of surface modes along well-defined directions. Our results support using scattering elements to excite SPs with low-energy electrons.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"21 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0326","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability of surface polaritons (SPs) to enhance and manipulate light fields down to deep-subwavelength length scales enables applications in optical sensing and nonlinear optics at the nanoscale. However, the wavelength mismatch between light and SPs prevents direct optical excitation of surface-bound modes, thereby limiting the widespread development of SP-based photonics. Free electrons are a natural choice to directly excite strongly confined SPs because they can supply field components of high momentum at designated positions with subnanometer precision. Here, we theoretically explore free-electron–SP coupling mediated by small scatterers and show that low-energy electrons can efficiently excite surface modes with a maximum probability reached at an optimum surface–scatterer distance. By aligning the electron beam with a periodic array of scatterers placed near a polariton-supporting interface, in-plane Smith–Purcell emission results in the excitation of surface modes along well-defined directions. Our results support using scattering elements to excite SPs with low-energy electrons.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.