Coccoloba uvifera L. associated with Scleroderma Bermudense Coker: a pantropical ectomycorrhizal symbiosis used in restoring of degraded coastal sand dunes.

IF 3.3 2区 生物学 Q2 MYCOLOGY Mycorrhiza Pub Date : 2024-11-01 Epub Date: 2024-10-05 DOI:10.1007/s00572-024-01170-8
A M Bâ, S Séne, M Manokari, M M Bullaín Galardis, S N Sylla, M A Selosse, M S Shekhawat
{"title":"Coccoloba uvifera L. associated with Scleroderma Bermudense Coker: a pantropical ectomycorrhizal symbiosis used in restoring of degraded coastal sand dunes.","authors":"A M Bâ, S Séne, M Manokari, M M Bullaín Galardis, S N Sylla, M A Selosse, M S Shekhawat","doi":"10.1007/s00572-024-01170-8","DOIUrl":null,"url":null,"abstract":"<p><p>Coccoloba uvifera L. (Polygonacaeae), named also seagrape, is an ectomycorrhizal (ECM) Caribbean beach tree, introduced pantropically for stabilizing coastal soils and producing edible fruits. This review covers the pantropical distribution and micropropagation of seagrape as well as genetic diversity, functional traits and use of ECM symbioses in response to salinity, both in its native regions and areas where it has been introduced. The ECM fungal diversity associated with seagrape was found to be relatively low in its region of origin, with Scleroderma bermudense Coker being the predominant fungal species. In regions of introduction, seagrape predominantly associated with Scleroderma species, whereas S. bermudense was exclusively identified in Réunion and Senegal. The introduction of S. bermudense is likely through spores adhering to the seed coats of seagrape, suggesting a vertical transmission of ECM colonization in seagrape by S. bermudense. This ECM fungus demonstrated its capacity to enhance salt tolerance in seagrape seedlings by reducing Na concentration and increasing K and Ca levels, consequently promoting higher K/Na and Ca/Na ratios in the tissues of ECM seedlings vs. non-ECM plants in nursery conditions. Moreover, the ECM symbiosis positively influenced growth, photosynthetic and transpiration rates, chlorophyll fluorescence and content, stomatal conductance, intercellular CO<sub>2</sub>, and water status, which improved the performance of ECM seagrape exposed to salt stress in planting conditions. The standardization of seagrape micropropagation emerges as a crucial tool for propagating homogeneous plant material in nursery and planting conditions. This review also explores the use of the ECM symbiosis between seagrape and S. bermudense as a strategy for restoring degraded coastal ecosystems in the Caribbean, Indian Ocean, and West African regions.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":" ","pages":"375-389"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-024-01170-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coccoloba uvifera L. (Polygonacaeae), named also seagrape, is an ectomycorrhizal (ECM) Caribbean beach tree, introduced pantropically for stabilizing coastal soils and producing edible fruits. This review covers the pantropical distribution and micropropagation of seagrape as well as genetic diversity, functional traits and use of ECM symbioses in response to salinity, both in its native regions and areas where it has been introduced. The ECM fungal diversity associated with seagrape was found to be relatively low in its region of origin, with Scleroderma bermudense Coker being the predominant fungal species. In regions of introduction, seagrape predominantly associated with Scleroderma species, whereas S. bermudense was exclusively identified in Réunion and Senegal. The introduction of S. bermudense is likely through spores adhering to the seed coats of seagrape, suggesting a vertical transmission of ECM colonization in seagrape by S. bermudense. This ECM fungus demonstrated its capacity to enhance salt tolerance in seagrape seedlings by reducing Na concentration and increasing K and Ca levels, consequently promoting higher K/Na and Ca/Na ratios in the tissues of ECM seedlings vs. non-ECM plants in nursery conditions. Moreover, the ECM symbiosis positively influenced growth, photosynthetic and transpiration rates, chlorophyll fluorescence and content, stomatal conductance, intercellular CO2, and water status, which improved the performance of ECM seagrape exposed to salt stress in planting conditions. The standardization of seagrape micropropagation emerges as a crucial tool for propagating homogeneous plant material in nursery and planting conditions. This review also explores the use of the ECM symbiosis between seagrape and S. bermudense as a strategy for restoring degraded coastal ecosystems in the Caribbean, Indian Ocean, and West African regions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与 Scleroderma Bermudense Coker 相关联的 Coccoloba uvifera L.:用于恢复退化沿海沙丘的泛热带外生菌根共生关系。
Coccoloba uvifera L.(蓼科),又名海葡萄,是一种外生菌根(ECM)加勒比海滩树种,泛热带引种用于稳定沿海土壤和生产食用果实。这篇综述介绍了海葡萄在泛热带地区的分布和微繁殖情况,以及在其原产地和引进地区的遗传多样性、功能特征和利用 ECM 共生物应对盐度的情况。研究发现,在海葡萄原产地,与海葡萄相关的 ECM 真菌多样性相对较低,主要的真菌种类是 Scleroderma bermudense Coker。在引进地区,海葡萄主要与硬皮真菌相关,而 S. bermudense 只在留尼汪和塞内加尔被发现。S. bermudense 很可能是通过附着在海葡萄种皮上的孢子传入的,这表明 S. bermudense 在海葡萄中的 ECM 定殖是垂直传播的。这种 ECM 真菌通过降低 Na 浓度、提高 K 和 Ca 含量来增强海葡萄幼苗的耐盐能力,从而促进 ECM 幼苗组织中的 K/Na 和 Ca/Na 比率高于苗圃条件下的非 ECM 植物。此外,ECM 共生还对生长、光合作用和蒸腾速率、叶绿素荧光和含量、气孔导度、细胞间 CO2 和水分状况产生了积极影响,从而改善了 ECM 海葡萄在种植条件下承受盐胁迫的表现。海葡萄微繁殖标准化是在育苗和种植条件下繁殖同质植物材料的重要工具。本综述还探讨了利用海葡萄与 S. bermudense 之间的 ECM 共生关系作为恢复加勒比海、印度洋和西非地区退化的沿海生态系统的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
期刊最新文献
Common mycorrhizal networks improve survival and mediate facilitative plant interactions among Andropogon gerardii seedlings under drought stress. AM fungus plant colonization rather than an Epichloë endophyte attracts fall armyworm feeding. Lead (Pb) tolerance in the ectomycorrhizal fungi Suillus brevipes and S. tomentosus. Arbuscular mycorrhizal fungi travel the world with harvested underground crops. Is arbuscular mycorrhizal fungal addition beneficial to potato systems? A meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1