Dan Liao, Yanxian He, Bin He, Saitian Zeng, Yejia Cui, Cuifen Li, Haohai Huang
{"title":"Inhibiting SNX10 induces autophagy to suppress invasion and EMT and inhibits the PI3K/AKT pathway in cervical cancer.","authors":"Dan Liao, Yanxian He, Bin He, Saitian Zeng, Yejia Cui, Cuifen Li, Haohai Huang","doi":"10.1007/s12094-024-03715-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Cervical cancer (CC) is a prevalent malignancy among women with high morbidity and poor prognosis. Sorting nexin 10 (SNX10) is a newly recognized cancer regulatory factor, while its action on CC progression remains elusive. Hence, this study studied the effect of SNX10 on CC development and investigated the mechanism.</p><p><strong>Methods: </strong>The SNX10 level in CC and the overall survival of CC cases with different SNX10 expressions were determined by bioinformatics analysis in GEPIA. The SNX10 expression in tumor tissues and clinical significance were studied in 64 CC cases. The overall survival was assessed using Kaplan-Meier analysis. The formation of LC3 was evaluated using immunofluorescence. Cell invasion was measured using the Transwell assay. Epithelial-to-mesenchymal transition (EMT) was determined by observing cell morphology and assessing EMT marker levels. A xenograft tumor was constructed to evaluate tumor growth.</p><p><strong>Results: </strong>SNX10 was elevated in CC tissues and cells, and the CC cases with high SNX10 levels exhibited poor overall survival. Besides, SNX10 correlated with the FIGO stage, lymph node invasion, and stromal invasion of CC. SNX10 silencing induced CC cell autophagy and suppressed CC cell invasion and EMT. Meanwhile, silenced SNX10 could suppress invasion and EMT via inducing autophagy. Furthermore, SNX10 inhibition suppressed the PI3K/AKT pathway. Moreover, silenced SNX10 restrained the tumor growth, autophagy, and EMT of CC in vivo.</p><p><strong>Conclusion: </strong>SNX10 was enhanced in CC and correlated with poor prognosis. Silenced SNX10 induced autophagy to suppress invasion and EMT and inhibited the PI3K/AKT pathway in CC, making SNX10 a valuable molecule for CC therapy.</p>","PeriodicalId":50685,"journal":{"name":"Clinical & Translational Oncology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12094-024-03715-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Cervical cancer (CC) is a prevalent malignancy among women with high morbidity and poor prognosis. Sorting nexin 10 (SNX10) is a newly recognized cancer regulatory factor, while its action on CC progression remains elusive. Hence, this study studied the effect of SNX10 on CC development and investigated the mechanism.
Methods: The SNX10 level in CC and the overall survival of CC cases with different SNX10 expressions were determined by bioinformatics analysis in GEPIA. The SNX10 expression in tumor tissues and clinical significance were studied in 64 CC cases. The overall survival was assessed using Kaplan-Meier analysis. The formation of LC3 was evaluated using immunofluorescence. Cell invasion was measured using the Transwell assay. Epithelial-to-mesenchymal transition (EMT) was determined by observing cell morphology and assessing EMT marker levels. A xenograft tumor was constructed to evaluate tumor growth.
Results: SNX10 was elevated in CC tissues and cells, and the CC cases with high SNX10 levels exhibited poor overall survival. Besides, SNX10 correlated with the FIGO stage, lymph node invasion, and stromal invasion of CC. SNX10 silencing induced CC cell autophagy and suppressed CC cell invasion and EMT. Meanwhile, silenced SNX10 could suppress invasion and EMT via inducing autophagy. Furthermore, SNX10 inhibition suppressed the PI3K/AKT pathway. Moreover, silenced SNX10 restrained the tumor growth, autophagy, and EMT of CC in vivo.
Conclusion: SNX10 was enhanced in CC and correlated with poor prognosis. Silenced SNX10 induced autophagy to suppress invasion and EMT and inhibited the PI3K/AKT pathway in CC, making SNX10 a valuable molecule for CC therapy.
期刊介绍:
Clinical and Translational Oncology is an international journal devoted to fostering interaction between experimental and clinical oncology. It covers all aspects of research on cancer, from the more basic discoveries dealing with both cell and molecular biology of tumour cells, to the most advanced clinical assays of conventional and new drugs. In addition, the journal has a strong commitment to facilitating the transfer of knowledge from the basic laboratory to the clinical practice, with the publication of educational series devoted to closing the gap between molecular and clinical oncologists. Molecular biology of tumours, identification of new targets for cancer therapy, and new technologies for research and treatment of cancer are the major themes covered by the educational series. Full research articles on a broad spectrum of subjects, including the molecular and cellular bases of disease, aetiology, pathophysiology, pathology, epidemiology, clinical features, and the diagnosis, prognosis and treatment of cancer, will be considered for publication.