Ji-Won Park, Tae-Ik Choi, Tae-Yoon Kim, Yu-Ri Lee, Dilan Wellalage Don, Jaya K George-Abraham, Laurie A Robak, Cristina C Trandafir, Pengfei Liu, Jill A Rosenfeld, Tae Hyeong Kim, Florence Petit, Yoo-Mi Kim, Chong Kun Cheon, Yoonsung Lee, Cheol-Hee Kim
{"title":"RFC2 may contribute to the pathogenicity of Williams syndrome revealed in a zebrafish model.","authors":"Ji-Won Park, Tae-Ik Choi, Tae-Yoon Kim, Yu-Ri Lee, Dilan Wellalage Don, Jaya K George-Abraham, Laurie A Robak, Cristina C Trandafir, Pengfei Liu, Jill A Rosenfeld, Tae Hyeong Kim, Florence Petit, Yoo-Mi Kim, Chong Kun Cheon, Yoonsung Lee, Cheol-Hee Kim","doi":"10.1016/j.jgg.2024.09.016","DOIUrl":null,"url":null,"abstract":"<p><p>Williams syndrome (WS) is a rare multisystemic disorder caused by recurrent microdeletions on 7q11.23, characterized by intellectual disability, distinctive craniofacial and dental features, and cardiovascular problems. Previous studies have explored the roles of individual genes within these microdeletions in contributing to WS phenotypes. Here, we report five patients with WS with 1.4 Mb-1.5 Mb microdeletions that include RFC2, as well as one patient with a 167-kb microdeletion involving RFC2 and six patients with intragenic variants within RFC2. To investigate the potential involvement of RFC2 in WS pathogenicity, we generate a rfc2 knockout (KO) zebrafish using CRISPR-Cas9 technology. Additionally, we generate a KO zebrafish of its paralog gene, rfc5, to better understand the functions of these RFC genes in development and disease. Both rfc2 and rfc5 KO zebrafish exhibit similar phenotypes reminiscent of WS, including small head and brain, jaw and dental defects, and vascular problems. RNA-seq analysis reveals that genes associated with neural cell survival and differentiation are specifically affected in rfc2 KO zebrafish. In addition, heterozygous rfc2 KO adult zebrafish demonstrate an anxiety-like behavior with increased social cohesion. These results suggest that RFC2 may contribute to the pathogenicity of Williams syndrome, as evidenced by the zebrafish model.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jgg.2024.09.016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Williams syndrome (WS) is a rare multisystemic disorder caused by recurrent microdeletions on 7q11.23, characterized by intellectual disability, distinctive craniofacial and dental features, and cardiovascular problems. Previous studies have explored the roles of individual genes within these microdeletions in contributing to WS phenotypes. Here, we report five patients with WS with 1.4 Mb-1.5 Mb microdeletions that include RFC2, as well as one patient with a 167-kb microdeletion involving RFC2 and six patients with intragenic variants within RFC2. To investigate the potential involvement of RFC2 in WS pathogenicity, we generate a rfc2 knockout (KO) zebrafish using CRISPR-Cas9 technology. Additionally, we generate a KO zebrafish of its paralog gene, rfc5, to better understand the functions of these RFC genes in development and disease. Both rfc2 and rfc5 KO zebrafish exhibit similar phenotypes reminiscent of WS, including small head and brain, jaw and dental defects, and vascular problems. RNA-seq analysis reveals that genes associated with neural cell survival and differentiation are specifically affected in rfc2 KO zebrafish. In addition, heterozygous rfc2 KO adult zebrafish demonstrate an anxiety-like behavior with increased social cohesion. These results suggest that RFC2 may contribute to the pathogenicity of Williams syndrome, as evidenced by the zebrafish model.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.