P. Alexandri , S.F. Walkom , G.E. Gardner , P. McGilchrist , D.J. Brown
{"title":"Meat tenderness in Australian lamb: Data editing, environmental variation and their effects in genetic parameter estimation","authors":"P. Alexandri , S.F. Walkom , G.E. Gardner , P. McGilchrist , D.J. Brown","doi":"10.1016/j.meatsci.2024.109678","DOIUrl":null,"url":null,"abstract":"<div><div>Breeding for meat quality increases the value of lambs and requires reliable genetic parameters to achieve balanced genetic progress. Meat tenderness, accomplished by selecting for lower shear force, is an important eating quality trait because of its relationship with consumer satisfaction. Factors influencing shear force, include the pH and temperature decline post-mortem which can contribute towards higher shear force values and increased variation across contemporary groups. This study explored if genetic parameters for shear force change when post slaughter covariates and heterogeneous variance are corrected for, using data from 32,223 animals from different sheep breeds. Results showed that removing extreme individuals and contemporary groups with high mean shear force values reduced residual variance, followed by a smaller reduction in additive genetic variance and little effect on heritability. Results show that edited data performed better at predicting progeny performance and reduced potential bias introduced in the genetic evaluation due to data quality. The effect of including post-slaughter covariates in the genetic analysis was tested by estimating different model predictability through regression of estimated breeding values against offspring performance, showing that the model including hot carcass weight performed better followed by the one including both carcass weight and C-site fat depth. Our results highlight that historic and current in-plant recording practices do not provide the capacity to account for non-genetic factors associated with abattoir environment that might be impacting the ability to accurately calculate shear force breeding values. In that sense, genetic evaluation can be improved by applying more rigorous data editing.</div></div>","PeriodicalId":389,"journal":{"name":"Meat Science","volume":"219 ","pages":"Article 109678"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meat Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309174024002559","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Breeding for meat quality increases the value of lambs and requires reliable genetic parameters to achieve balanced genetic progress. Meat tenderness, accomplished by selecting for lower shear force, is an important eating quality trait because of its relationship with consumer satisfaction. Factors influencing shear force, include the pH and temperature decline post-mortem which can contribute towards higher shear force values and increased variation across contemporary groups. This study explored if genetic parameters for shear force change when post slaughter covariates and heterogeneous variance are corrected for, using data from 32,223 animals from different sheep breeds. Results showed that removing extreme individuals and contemporary groups with high mean shear force values reduced residual variance, followed by a smaller reduction in additive genetic variance and little effect on heritability. Results show that edited data performed better at predicting progeny performance and reduced potential bias introduced in the genetic evaluation due to data quality. The effect of including post-slaughter covariates in the genetic analysis was tested by estimating different model predictability through regression of estimated breeding values against offspring performance, showing that the model including hot carcass weight performed better followed by the one including both carcass weight and C-site fat depth. Our results highlight that historic and current in-plant recording practices do not provide the capacity to account for non-genetic factors associated with abattoir environment that might be impacting the ability to accurately calculate shear force breeding values. In that sense, genetic evaluation can be improved by applying more rigorous data editing.
期刊介绍:
The aim of Meat Science is to serve as a suitable platform for the dissemination of interdisciplinary and international knowledge on all factors influencing the properties of meat. While the journal primarily focuses on the flesh of mammals, contributions related to poultry will be considered if they enhance the overall understanding of the relationship between muscle nature and meat quality post mortem. Additionally, papers on large birds (e.g., emus, ostriches) as well as wild-captured mammals and crocodiles will be welcomed.