Monitoring Gene Sequences of Staphylococcus aureus Using a Love-Mode Surface Acoustic Wave Biosensor Coated with Cellulose Acetate/Polyethylenimine Nanofibers and Au Nanoparticles.
Yahui He, Jian Zhou, Jinbo Zhang, Yihao Guo, Zhangbin Ji, Hui Chen, Yongqing Fu
{"title":"Monitoring Gene Sequences of <i>Staphylococcus aureus</i> Using a Love-Mode Surface Acoustic Wave Biosensor Coated with Cellulose Acetate/Polyethylenimine Nanofibers and Au Nanoparticles.","authors":"Yahui He, Jian Zhou, Jinbo Zhang, Yihao Guo, Zhangbin Ji, Hui Chen, Yongqing Fu","doi":"10.1021/acssensors.4c01949","DOIUrl":null,"url":null,"abstract":"<p><p>Love-mode surface acoustic wave (SAW) sensors show great promise for biodetection applications owing to their low cost, digital output, and wireless passive capability, but their performance is often restricted by the availability of suitable sensitive membrane layers. Herein, a composite layer of electrospun fibers made from cellulose acetate and polyethylenimine, coated with gold nanoparticles, is proposed as a porous and sensitive membrane coated onto a love-mode SAW biosensor for monitoring gene sequences of <i>Staphylococcus aureus</i>. The results showed that the developed sensor exhibited an impressive sensitivity of 122.56 Hz/(nmol/L) for detecting gene sequences of <i>S. aureus</i>, surpassing the sensitivity of conventional SAW sensors employing a bare Au film as the sensitive layer by 5-fold. The analysis revealed a remarkably linear detection (R<sup>2</sup> of 0.97827) of <i>S. aureus</i> gene sequences within the range of 0 to 100 nmol/L. The limit of detection was impressively low at 0.9116 nmol/L. The good stability and specificity of the biosensor in liquid environments were demonstrated for clinical diagnostics.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":" ","pages":"5570-5577"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c01949","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Love-mode surface acoustic wave (SAW) sensors show great promise for biodetection applications owing to their low cost, digital output, and wireless passive capability, but their performance is often restricted by the availability of suitable sensitive membrane layers. Herein, a composite layer of electrospun fibers made from cellulose acetate and polyethylenimine, coated with gold nanoparticles, is proposed as a porous and sensitive membrane coated onto a love-mode SAW biosensor for monitoring gene sequences of Staphylococcus aureus. The results showed that the developed sensor exhibited an impressive sensitivity of 122.56 Hz/(nmol/L) for detecting gene sequences of S. aureus, surpassing the sensitivity of conventional SAW sensors employing a bare Au film as the sensitive layer by 5-fold. The analysis revealed a remarkably linear detection (R2 of 0.97827) of S. aureus gene sequences within the range of 0 to 100 nmol/L. The limit of detection was impressively low at 0.9116 nmol/L. The good stability and specificity of the biosensor in liquid environments were demonstrated for clinical diagnostics.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.