{"title":"Application of artificial neural network for the mechano-bactericidal effect of bioinspired nanopatterned surfaces","authors":"Ecren Uzun Yaylacı","doi":"10.1007/s00249-024-01723-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study aimed to calculate the effect of nanopatterns’ peak sharpness, width, and spacing parameters on <i>P. aeruginosa</i> and <i>S. aureus</i> cell walls by artificial neural network and finite element analysis. Elastic and creep deformation models of bacteria were developed in silico. Maximum deformation, maximum stress, and maximum strain values of the cell walls were calculated. According to the results, while the spacing of the nanopatterns is constant, it was determined that when their peaks were sharpened and their width decreased, maximum deformation, maximum stress, and maximum strain affecting the cell walls of both bacteria increased. When sharpness and width of the nano-patterns are kept constant and the spacing is increased, maximum deformation, maximum stress, and maximum strain in <i>P. aeruginosa</i> cell walls increase, but a decrease in <i>S. aureus</i> was observed. This study proves that changes in the geometric structures of nanopatterned surfaces can show different effects on different bacteria.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"53 7-8","pages":"415 - 427"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-024-01723-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to calculate the effect of nanopatterns’ peak sharpness, width, and spacing parameters on P. aeruginosa and S. aureus cell walls by artificial neural network and finite element analysis. Elastic and creep deformation models of bacteria were developed in silico. Maximum deformation, maximum stress, and maximum strain values of the cell walls were calculated. According to the results, while the spacing of the nanopatterns is constant, it was determined that when their peaks were sharpened and their width decreased, maximum deformation, maximum stress, and maximum strain affecting the cell walls of both bacteria increased. When sharpness and width of the nano-patterns are kept constant and the spacing is increased, maximum deformation, maximum stress, and maximum strain in P. aeruginosa cell walls increase, but a decrease in S. aureus was observed. This study proves that changes in the geometric structures of nanopatterned surfaces can show different effects on different bacteria.
期刊介绍:
The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context.
Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance.
Principal areas of interest include:
- Structure and dynamics of biological macromolecules
- Membrane biophysics and ion channels
- Cell biophysics and organisation
- Macromolecular assemblies
- Biophysical methods and instrumentation
- Advanced microscopics
- System dynamics.