ComBat models for harmonization of resting-state EEG features in multisite studies

IF 3.7 3区 医学 Q1 CLINICAL NEUROLOGY Clinical Neurophysiology Pub Date : 2024-09-24 DOI:10.1016/j.clinph.2024.09.019
Alberto Jaramillo-Jimenez , Diego A Tovar-Rios , Yorguin-Jose Mantilla-Ramos , John-Fredy Ochoa-Gomez , Laura Bonanni , Kolbjørn Brønnick
{"title":"ComBat models for harmonization of resting-state EEG features in multisite studies","authors":"Alberto Jaramillo-Jimenez ,&nbsp;Diego A Tovar-Rios ,&nbsp;Yorguin-Jose Mantilla-Ramos ,&nbsp;John-Fredy Ochoa-Gomez ,&nbsp;Laura Bonanni ,&nbsp;Kolbjørn Brønnick","doi":"10.1016/j.clinph.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Pooling multisite resting-state electroencephalography (rsEEG) datasets may introduce bias due to batch effects (i.e., cross-site differences in the rsEEG related to scanner/sample characteristics). The Combining Batches (ComBat) models, introduced for microarray expression and adapted for neuroimaging, can control for batch effects while preserving the variability of biological covariates. We aim to evaluate four ComBat harmonization methods in a pooled sample from five independent rsEEG datasets of young and old adults.</div></div><div><h3>Methods</h3><div>RsEEG signals (n = 374) were automatically preprocessed. Oscillatory and aperiodic rsEEG features were extracted in sensor space. Features were harmonized using neuroCombat (standard ComBat used in neuroimaging), neuroHarmonize (variant with nonlinear adjustment of covariates), OPNested-GMM (variant based on Gaussian Mixture Models to fit bimodal feature distributions), and HarmonizR (variant based on resampling to handle missing feature values). Relationships between rsEEG features and age were explored before and after harmonizing batch effects.</div></div><div><h3>Results</h3><div>Batch effects were identified in rsEEG features. All ComBat methods reduced batch effects and features’ dispersion; HarmonizR and OPNested-GMM ComBat achieved the greatest performance. Harmonized Beta power, individual Alpha peak frequency, Aperiodic exponent, and offset in posterior electrodes showed significant relations with age. All ComBat models maintained the direction of observed relationships while increasing the effect size.</div></div><div><h3>Conclusions</h3><div>ComBat models, particularly HarmonizeR and OPNested-GMM ComBat, effectively control for batch effects in rsEEG spectral features.</div></div><div><h3>Significance</h3><div>This workflow can be used in multisite studies to harmonize batch effects in sensor-space rsEEG spectral features while preserving biological associations.</div></div>","PeriodicalId":10671,"journal":{"name":"Clinical Neurophysiology","volume":"167 ","pages":"Pages 241-253"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388245724002785","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Pooling multisite resting-state electroencephalography (rsEEG) datasets may introduce bias due to batch effects (i.e., cross-site differences in the rsEEG related to scanner/sample characteristics). The Combining Batches (ComBat) models, introduced for microarray expression and adapted for neuroimaging, can control for batch effects while preserving the variability of biological covariates. We aim to evaluate four ComBat harmonization methods in a pooled sample from five independent rsEEG datasets of young and old adults.

Methods

RsEEG signals (n = 374) were automatically preprocessed. Oscillatory and aperiodic rsEEG features were extracted in sensor space. Features were harmonized using neuroCombat (standard ComBat used in neuroimaging), neuroHarmonize (variant with nonlinear adjustment of covariates), OPNested-GMM (variant based on Gaussian Mixture Models to fit bimodal feature distributions), and HarmonizR (variant based on resampling to handle missing feature values). Relationships between rsEEG features and age were explored before and after harmonizing batch effects.

Results

Batch effects were identified in rsEEG features. All ComBat methods reduced batch effects and features’ dispersion; HarmonizR and OPNested-GMM ComBat achieved the greatest performance. Harmonized Beta power, individual Alpha peak frequency, Aperiodic exponent, and offset in posterior electrodes showed significant relations with age. All ComBat models maintained the direction of observed relationships while increasing the effect size.

Conclusions

ComBat models, particularly HarmonizeR and OPNested-GMM ComBat, effectively control for batch effects in rsEEG spectral features.

Significance

This workflow can be used in multisite studies to harmonize batch effects in sensor-space rsEEG spectral features while preserving biological associations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于协调多站点研究中静息态脑电图特征的 ComBat 模型。
目的:汇集多站点静息态脑电图(rsEEG)数据集可能会因批次效应(即与扫描仪/样本特征有关的 rsEEG 跨站点差异)而产生偏差。结合批次(Combining Bat,ComBat)模型是针对微阵列表达而提出的,并适用于神经影像学,它可以控制批次效应,同时保留生物协变量的变异性。我们的目的是在五个独立的青年和老年人 rsEEG 数据集的集合样本中评估四种 ComBat 协调方法:对 RsEEG 信号(n = 374)进行自动预处理。在传感器空间提取振荡和非周期性 rsEEG 特征。使用 neuroCombat(神经影像学中使用的标准 ComBat)、neuroHarmonize(对协变量进行非线性调整的变体)、OPNested-GMM(基于高斯混杂模型拟合双峰特征分布的变体)和 HarmonizR(基于重采样处理缺失特征值的变体)对特征进行协调。在协调批次效应之前和之后,探讨了 rsEEG 特征与年龄之间的关系:结果:在 rsEEG 特征中发现了批次效应。所有 ComBat 方法都降低了批次效应和特征的离散性;HarmonizR 和 OPNested-GMM ComBat 的性能最佳。协调 Beta 功率、单个 Alpha 峰频、Aperiodic 指数和后电极偏移与年龄有显著关系。所有 ComBat 模型都保持了观察到的关系方向,同时增加了效应大小:结论:ComBat 模型,尤其是 HarmonizeR 和 OPNested-GMM ComBat,能有效控制 rsEEG 频谱特征的批次效应:该工作流程可用于多站点研究,以协调传感器空间 rsEEG 频谱特征的批次效应,同时保留生物学关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical Neurophysiology
Clinical Neurophysiology 医学-临床神经学
CiteScore
8.70
自引率
6.40%
发文量
932
审稿时长
59 days
期刊介绍: As of January 1999, The journal Electroencephalography and Clinical Neurophysiology, and its two sections Electromyography and Motor Control and Evoked Potentials have amalgamated to become this journal - Clinical Neurophysiology. Clinical Neurophysiology is the official journal of the International Federation of Clinical Neurophysiology, the Brazilian Society of Clinical Neurophysiology, the Czech Society of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the International Society of Intraoperative Neurophysiology.The journal is dedicated to fostering research and disseminating information on all aspects of both normal and abnormal functioning of the nervous system. The key aim of the publication is to disseminate scholarly reports on the pathophysiology underlying diseases of the central and peripheral nervous system of human patients. Clinical trials that use neurophysiological measures to document change are encouraged, as are manuscripts reporting data on integrated neuroimaging of central nervous function including, but not limited to, functional MRI, MEG, EEG, PET and other neuroimaging modalities.
期刊最新文献
Investigation of lateralized periodic discharge features associated with epileptogenesis Altered cortical excitability in tuberous sclerosis and the effect of mTOR inhibitors: An intracranial electrical stimulation study Alterations in temporal-spatial brain entropy in treatment-resistant depression treated with nitrous oxide: Evidence from resting-state EEG Neural correlates of semantic and phonemic variants of verbal fluency tasks: A combined MEG and fMRI study. Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1