Alberto Jaramillo-Jimenez , Diego A Tovar-Rios , Yorguin-Jose Mantilla-Ramos , John-Fredy Ochoa-Gomez , Laura Bonanni , Kolbjørn Brønnick
{"title":"ComBat models for harmonization of resting-state EEG features in multisite studies","authors":"Alberto Jaramillo-Jimenez , Diego A Tovar-Rios , Yorguin-Jose Mantilla-Ramos , John-Fredy Ochoa-Gomez , Laura Bonanni , Kolbjørn Brønnick","doi":"10.1016/j.clinph.2024.09.019","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Pooling multisite resting-state electroencephalography (rsEEG) datasets may introduce bias due to batch effects (i.e., cross-site differences in the rsEEG related to scanner/sample characteristics). The Combining Batches (ComBat) models, introduced for microarray expression and adapted for neuroimaging, can control for batch effects while preserving the variability of biological covariates. We aim to evaluate four ComBat harmonization methods in a pooled sample from five independent rsEEG datasets of young and old adults.</div></div><div><h3>Methods</h3><div>RsEEG signals (n = 374) were automatically preprocessed. Oscillatory and aperiodic rsEEG features were extracted in sensor space. Features were harmonized using neuroCombat (standard ComBat used in neuroimaging), neuroHarmonize (variant with nonlinear adjustment of covariates), OPNested-GMM (variant based on Gaussian Mixture Models to fit bimodal feature distributions), and HarmonizR (variant based on resampling to handle missing feature values). Relationships between rsEEG features and age were explored before and after harmonizing batch effects.</div></div><div><h3>Results</h3><div>Batch effects were identified in rsEEG features. All ComBat methods reduced batch effects and features’ dispersion; HarmonizR and OPNested-GMM ComBat achieved the greatest performance. Harmonized Beta power, individual Alpha peak frequency, Aperiodic exponent, and offset in posterior electrodes showed significant relations with age. All ComBat models maintained the direction of observed relationships while increasing the effect size.</div></div><div><h3>Conclusions</h3><div>ComBat models, particularly HarmonizeR and OPNested-GMM ComBat, effectively control for batch effects in rsEEG spectral features.</div></div><div><h3>Significance</h3><div>This workflow can be used in multisite studies to harmonize batch effects in sensor-space rsEEG spectral features while preserving biological associations.</div></div>","PeriodicalId":10671,"journal":{"name":"Clinical Neurophysiology","volume":"167 ","pages":"Pages 241-253"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388245724002785","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Pooling multisite resting-state electroencephalography (rsEEG) datasets may introduce bias due to batch effects (i.e., cross-site differences in the rsEEG related to scanner/sample characteristics). The Combining Batches (ComBat) models, introduced for microarray expression and adapted for neuroimaging, can control for batch effects while preserving the variability of biological covariates. We aim to evaluate four ComBat harmonization methods in a pooled sample from five independent rsEEG datasets of young and old adults.
Methods
RsEEG signals (n = 374) were automatically preprocessed. Oscillatory and aperiodic rsEEG features were extracted in sensor space. Features were harmonized using neuroCombat (standard ComBat used in neuroimaging), neuroHarmonize (variant with nonlinear adjustment of covariates), OPNested-GMM (variant based on Gaussian Mixture Models to fit bimodal feature distributions), and HarmonizR (variant based on resampling to handle missing feature values). Relationships between rsEEG features and age were explored before and after harmonizing batch effects.
Results
Batch effects were identified in rsEEG features. All ComBat methods reduced batch effects and features’ dispersion; HarmonizR and OPNested-GMM ComBat achieved the greatest performance. Harmonized Beta power, individual Alpha peak frequency, Aperiodic exponent, and offset in posterior electrodes showed significant relations with age. All ComBat models maintained the direction of observed relationships while increasing the effect size.
Conclusions
ComBat models, particularly HarmonizeR and OPNested-GMM ComBat, effectively control for batch effects in rsEEG spectral features.
Significance
This workflow can be used in multisite studies to harmonize batch effects in sensor-space rsEEG spectral features while preserving biological associations.
期刊介绍:
As of January 1999, The journal Electroencephalography and Clinical Neurophysiology, and its two sections Electromyography and Motor Control and Evoked Potentials have amalgamated to become this journal - Clinical Neurophysiology.
Clinical Neurophysiology is the official journal of the International Federation of Clinical Neurophysiology, the Brazilian Society of Clinical Neurophysiology, the Czech Society of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the International Society of Intraoperative Neurophysiology.The journal is dedicated to fostering research and disseminating information on all aspects of both normal and abnormal functioning of the nervous system. The key aim of the publication is to disseminate scholarly reports on the pathophysiology underlying diseases of the central and peripheral nervous system of human patients. Clinical trials that use neurophysiological measures to document change are encouraged, as are manuscripts reporting data on integrated neuroimaging of central nervous function including, but not limited to, functional MRI, MEG, EEG, PET and other neuroimaging modalities.