{"title":"Simple ROS-responsive micelles loaded Shikonin for efficient ovarian cancer targeting therapy by disrupting intracellular redox homeostasis","authors":"Kangyuan Hu , Xiuhua Li , Zhaodan Tan , Yan Shi","doi":"10.1016/j.ejpb.2024.114525","DOIUrl":null,"url":null,"abstract":"<div><div>Ovarian cancer is the most common malignant tumor in women. Shikonin (SHK), an herbal extract from Chinese medicine, shows promise in treating ovarian cancer by inducing reactive oxygen species (ROS). However, its clinical use is limited by poor tumor targeting and low bioavailability, and its therapeutic potential is further compromised by the elevated levels of antioxidants such as glutathione (GSH) within tumor cells. In this study, a novel formulation of ROS-responsive micelles loaded with SHK was developed using hyaluronic acid-phenylboronic acid pinacol ester conjugation (HA-PBAP) for targeted therapy of ovarian cancer through disruption of intracellular redox homeostasis. The SHK@HA-PBAP exhibits targeted delivery to ovarian cancer cells through the interaction between HA and CD44 receptors. Upon internalization by cancer cells, the high levels of intracellular ROS triggered the degradation of SHK@HA-PBAP and simultaneously released SHK and generated GSH scavenger quinone methide (QM). The SHK and QM released from the SHK@HA-PBAP effectively induce the production of ROS and deplete intracellular GSH, leading to the disruption of intracellular redox homeostasis and subsequent induction of cell death. These characteristics collectively inhibit the growth of ovarian cancer. In vitro and <em>in vivo</em> studies have demonstrated that SHK@HA-PBAP micelles exhibit superior antitumor efficacy compared to free SHK in both A2780 cells and A2780 tumor-bearing mice. The ROS-responsive SHK@HA-PBA presents a promising therapeutic approach for the treatment of ovarian cancer.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"204 ","pages":"Article 114525"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124003515","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian cancer is the most common malignant tumor in women. Shikonin (SHK), an herbal extract from Chinese medicine, shows promise in treating ovarian cancer by inducing reactive oxygen species (ROS). However, its clinical use is limited by poor tumor targeting and low bioavailability, and its therapeutic potential is further compromised by the elevated levels of antioxidants such as glutathione (GSH) within tumor cells. In this study, a novel formulation of ROS-responsive micelles loaded with SHK was developed using hyaluronic acid-phenylboronic acid pinacol ester conjugation (HA-PBAP) for targeted therapy of ovarian cancer through disruption of intracellular redox homeostasis. The SHK@HA-PBAP exhibits targeted delivery to ovarian cancer cells through the interaction between HA and CD44 receptors. Upon internalization by cancer cells, the high levels of intracellular ROS triggered the degradation of SHK@HA-PBAP and simultaneously released SHK and generated GSH scavenger quinone methide (QM). The SHK and QM released from the SHK@HA-PBAP effectively induce the production of ROS and deplete intracellular GSH, leading to the disruption of intracellular redox homeostasis and subsequent induction of cell death. These characteristics collectively inhibit the growth of ovarian cancer. In vitro and in vivo studies have demonstrated that SHK@HA-PBAP micelles exhibit superior antitumor efficacy compared to free SHK in both A2780 cells and A2780 tumor-bearing mice. The ROS-responsive SHK@HA-PBA presents a promising therapeutic approach for the treatment of ovarian cancer.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.