首页 > 最新文献

European Journal of Pharmaceutics and Biopharmaceutics最新文献

英文 中文
Continuous twin-screw melt granulation of drug-loaded electrospun fibers. 载药电纺纤维的连续双螺杆熔融造粒。
IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-17 DOI: 10.1016/j.ejpb.2024.114580
Petra Záhonyi, Áron Gábor Müncz, Anna Haraszti, Zsombor Kristóf Nagy, István Csontos, György Marosi, Edina Szabó

Electrospinning (ES) is a promising continuous formulation strategy to produce amorphous solid dispersions (ASDs) and thereby improve the dissolution of poorly water-soluble drugs. However, processing the electrospun material into solid dosage forms (e.g. tablets) is challenging due to the poor flow properties. In this research, continuous twin-screw melt granulation was applied to improve the flowability of the fibers and therefore ease the further processing steps. During this work, two ASD compositions were investigated: one containing 60 % poly-vinylpyrrolidone-vinyl acetate 6:4 copolymer and 40 % itraconazole (ITR), and another one containing hydroxypropyl methylcellulose (HPMC) and ITR in the same ratio. Both fiber compositions were granulated with polyethene glycol as the binder material, while the effects of the process parameters were examined. The application of higher granulation temperature and screw configurations with increased shear forces compromised the fibrous structure, induced crystallization of the ASD, and decreased the dissolution. However, the stability of the ITR-HPMC fibers proved to be higher as their granulation at 60 °C led to granules with adequate flow properties and dissolution. Moreover, tablets with fewer excipients were pressed from them, resulting in a 34 % reduction in weight. Consequently, this process can complement ES technology and facilitate its industrial implementation.

电纺丝(ES)是一种很有前景的连续制剂策略,可用于生产无定形固体分散体(ASD),从而改善水溶性差药物的溶解性。然而,由于电纺材料流动性差,将其加工成固体剂型(如片剂)具有挑战性。在这项研究中,采用了连续双螺杆熔融造粒技术来改善纤维的流动性,从而简化进一步的加工步骤。在这项工作中,研究了两种 ASD 组合物:一种含有 60% 的聚乙烯吡咯烷酮-醋酸乙烯酯 6:4 共聚物和 40% 的伊曲康唑(ITR),另一种含有相同比例的羟丙基甲基纤维素(HPMC)和伊曲康唑(ITR)。两种纤维组合物均以聚乙二醇为粘合剂材料进行造粒,同时考察了工艺参数的影响。较高的造粒温度和剪切力增大的螺杆配置破坏了纤维结构,导致 ASD 结晶,并降低了溶解度。然而,事实证明,ITR-HPMC 纤维的稳定性更高,因为它们在 60 °C 下制粒可获得具有适当流动性和溶解性的颗粒。此外,用它们压制出的片剂辅料更少,重量减轻了 34%。因此,该工艺可作为 ES 技术的补充,并促进其工业化应用。
{"title":"Continuous twin-screw melt granulation of drug-loaded electrospun fibers.","authors":"Petra Záhonyi, Áron Gábor Müncz, Anna Haraszti, Zsombor Kristóf Nagy, István Csontos, György Marosi, Edina Szabó","doi":"10.1016/j.ejpb.2024.114580","DOIUrl":"https://doi.org/10.1016/j.ejpb.2024.114580","url":null,"abstract":"<p><p>Electrospinning (ES) is a promising continuous formulation strategy to produce amorphous solid dispersions (ASDs) and thereby improve the dissolution of poorly water-soluble drugs. However, processing the electrospun material into solid dosage forms (e.g. tablets) is challenging due to the poor flow properties. In this research, continuous twin-screw melt granulation was applied to improve the flowability of the fibers and therefore ease the further processing steps. During this work, two ASD compositions were investigated: one containing 60 % poly-vinylpyrrolidone-vinyl acetate 6:4 copolymer and 40 % itraconazole (ITR), and another one containing hydroxypropyl methylcellulose (HPMC) and ITR in the same ratio. Both fiber compositions were granulated with polyethene glycol as the binder material, while the effects of the process parameters were examined. The application of higher granulation temperature and screw configurations with increased shear forces compromised the fibrous structure, induced crystallization of the ASD, and decreased the dissolution. However, the stability of the ITR-HPMC fibers proved to be higher as their granulation at 60 °C led to granules with adequate flow properties and dissolution. Moreover, tablets with fewer excipients were pressed from them, resulting in a 34 % reduction in weight. Consequently, this process can complement ES technology and facilitate its industrial implementation.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114580"},"PeriodicalIF":4.4,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homogeneity analysis of medicine tablets by laser induced breakdown spectroscopy combined with multivariate methods. 用激光诱导击穿光谱法结合多元方法分析药片的均匀性。
IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-13 DOI: 10.1016/j.ejpb.2024.114579
Amir Hossein Farhadian, Maedeh Mollaei

Pharmaceutical tablets need to have a homogenous chemical structure, especially in cases where the patient may divide the tablet in half prior to consumption. This work aims to demonstrate the viability of using laser induced breakdown spectroscopy (LIBS) for analyzing the homogeneity and determining the chemical composition of losartan potassium tablets. This was accomplished by obtaining the spectra of 10 tablet points in 30 successive laser pulses, which revealed four main peaks (C, H, N, and O) as well as a high concentration of calcium and potassium in the core tablets and titanium in the coating-all of which are excellent analytical objectives for LIBS. It is possible to say that the generated plasma meets the minimum requirement for local thermodynamic equilibrium because the physical parameters of the plasma, including temperature (T) and electronic density (Ne), were calculated throughout the Boltzmann plot and Stark broadened line, respectively, and the McWhirter criterion was met. In addition, T and Ne changes have been used for homogeneity analysis. Different peak comparisons cannot provide us with further data because the major structural components are similar, making it challenging to differentiate between them. So relative standard deviation (RSD) and principal component analysis (PCA) were used to comprise the whole spectra, which showed that the homogeneity of the tablet's core is better than that of the coating and is acceptable.

药片需要具有均匀的化学结构,尤其是在患者服用前可能会将药片分成两半的情况下。这项研究旨在证明使用激光诱导击穿光谱(LIBS)分析洛沙坦钾片的均匀性和确定其化学成分的可行性。通过连续 30 个激光脉冲获得 10 个片剂点的光谱,结果显示出四个主峰(C、H、N 和 O),以及片芯中高浓度的钙和钾和包衣中的钛--所有这些都是 LIBS 的绝佳分析目标。可以说,生成的等离子体符合局部热力学平衡的最低要求,因为等离子体的物理参数,包括温度(T)和电子密度(Ne),分别是通过整个波尔兹曼图和斯塔克展宽线计算出来的,符合麦克维尔特标准。此外,T 和 Ne 的变化也被用于均匀性分析。不同峰值的比较不能为我们提供进一步的数据,因为主要的结构成分都很相似,要区分它们很困难。因此,我们使用相对标准偏差(RSD)和主成分分析(PCA)来组成整个光谱,结果表明片剂药芯的均匀性优于包衣,是可以接受的。
{"title":"Homogeneity analysis of medicine tablets by laser induced breakdown spectroscopy combined with multivariate methods.","authors":"Amir Hossein Farhadian, Maedeh Mollaei","doi":"10.1016/j.ejpb.2024.114579","DOIUrl":"https://doi.org/10.1016/j.ejpb.2024.114579","url":null,"abstract":"<p><p>Pharmaceutical tablets need to have a homogenous chemical structure, especially in cases where the patient may divide the tablet in half prior to consumption. This work aims to demonstrate the viability of using laser induced breakdown spectroscopy (LIBS) for analyzing the homogeneity and determining the chemical composition of losartan potassium tablets. This was accomplished by obtaining the spectra of 10 tablet points in 30 successive laser pulses, which revealed four main peaks (C, H, N, and O) as well as a high concentration of calcium and potassium in the core tablets and titanium in the coating-all of which are excellent analytical objectives for LIBS. It is possible to say that the generated plasma meets the minimum requirement for local thermodynamic equilibrium because the physical parameters of the plasma, including temperature (T) and electronic density (N<sub>e</sub>), were calculated throughout the Boltzmann plot and Stark broadened line, respectively, and the McWhirter criterion was met. In addition, T and N<sub>e</sub> changes have been used for homogeneity analysis. Different peak comparisons cannot provide us with further data because the major structural components are similar, making it challenging to differentiate between them. So relative standard deviation (RSD) and principal component analysis (PCA) were used to comprise the whole spectra, which showed that the homogeneity of the tablet's core is better than that of the coating and is acceptable.</p>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114579"},"PeriodicalIF":4.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antifungal peptide-loaded alginate microfiber wound dressing evaluated against Candida albicans in vitro and ex vivo 抗真菌肽载体藻酸盐超细纤维伤口敷料对白色念珠菌的体外和体内评估。
IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-10 DOI: 10.1016/j.ejpb.2024.114578
Sabrina S. Snyder, Crystal A. Rock, Nancy J. Millenbaugh
Invasive fungal infections have high mortality rates, and many current antimycotics are limited by host toxicity and drug resistance. Recent experiments in our laboratory have demonstrated the antifungal activity of dKn2-7, a synthetic peptide, against Candida albicans. The purpose of the current study was to develop a wound dressing capable of dKn2-7 release for extended periods to help combat fungal infection in wounds. dKn2-7 was incorporated into calcium alginate microfibers, an excipient with known wound healing and hemostatic properties. dKn2-7 release rates from the fibers were dependent on drug loading, but all formulations exhibited a burst release with 41–71 % of total theoretical release in the first 15 min and 84–96 % release by 24 h. Calcium release at 15 min was similar to that of a commercial hemostatic dressing, indicating dKn2-7 loading would not adversely affect the hemostatic capability of the alginate fibers. In vitro antifungal studies indicated a dose dependent effect with fibers loaded at ≥20 µg/mg causing significant planktonic killing and ≥30 µg/mg causing significant biofilm killing. Viable fungal counts in biofilms grown on ex vivo porcine skin declined by 99 % following 500 µg/mg fiber treatment. Skin histology indicated no significant differences in tissue damage between treatment groups and controls. Results confirm calcium alginate microfibers are capable of binding and subsequently releasing dKn2-7 over a 24-h period when rehydrated. Furthermore, dKn2-7 released from the fibers was able to significantly reduce biofilms in an ex vivo model with minimal toxicity, indicating these dKn2-7-loaded fiber dressings may be effective at controlling C. albicans biofilm infections in vivo.
侵袭性真菌感染的死亡率很高,而目前许多抗霉菌药物都受到宿主毒性和耐药性的限制。我们实验室最近的实验证明了合成肽 dKn2-7 对白色念珠菌的抗真菌活性。本研究的目的是开发一种能够长时间释放 dKn2-7 的伤口敷料,以帮助对抗伤口中的真菌感染。dKn2-7 被掺入海藻酸钙微纤维中,这是一种具有已知伤口愈合和止血特性的赋形剂。dKn2-7 从纤维中的释放率取决于药物负载量,但所有配方都表现出迸发释放,在最初 15 分钟内释放总量的 41-71%,24 小时内释放 84-96%。15 分钟内的钙释放量与商用止血敷料相似,这表明 dKn2-7 的负载不会对海藻酸纤维的止血能力产生不利影响。体外抗真菌研究表明,≥20 微克/毫克的纤维负载会显著杀死浮游生物,≥30 微克/毫克的纤维负载会显著杀死生物膜,这种效应与剂量有关。经 500 µg/mg 纤维处理后,猪皮肤外生物膜上生长的真菌数量减少了 99%。皮肤组织学显示,处理组与对照组的组织损伤无明显差异。研究结果证实,海藻酸钙微纤维能够与 dKn2-7 结合,并在重新水合后的 24 小时内释放出 dKn2-7。此外,从纤维中释放出的 dKn2-7 能够在体内外模型中显著减少生物膜,且毒性极低,这表明这些装载了 dKn2-7 的纤维敷料可有效控制体内白僵菌生物膜感染。
{"title":"Antifungal peptide-loaded alginate microfiber wound dressing evaluated against Candida albicans in vitro and ex vivo","authors":"Sabrina S. Snyder,&nbsp;Crystal A. Rock,&nbsp;Nancy J. Millenbaugh","doi":"10.1016/j.ejpb.2024.114578","DOIUrl":"10.1016/j.ejpb.2024.114578","url":null,"abstract":"<div><div>Invasive fungal infections have high mortality rates, and many current antimycotics are limited by host toxicity and drug resistance. Recent experiments in our laboratory have demonstrated the antifungal activity of dKn2-7, a synthetic peptide, against <em>Candida albicans</em>. The purpose of the current study was to develop a wound dressing capable of dKn2-7 release for extended periods to help combat fungal infection in wounds. dKn2-7 was incorporated into calcium alginate microfibers, an excipient with known wound healing and hemostatic properties. dKn2-7 release rates from the fibers were dependent on drug loading, but all formulations exhibited a burst release with 41–71 % of total theoretical release in the first 15 min and 84–96 % release by 24 h. Calcium release at 15 min was similar to that of a commercial hemostatic dressing, indicating dKn2-7 loading would not adversely affect the hemostatic capability of the alginate fibers. <em>In vitro</em> antifungal studies indicated a dose dependent effect with fibers loaded at ≥20 µg/mg causing significant planktonic killing and ≥30 µg/mg causing significant biofilm killing. Viable fungal counts in biofilms grown on <em>ex vivo</em> porcine skin declined by 99 % following 500 µg/mg fiber treatment. Skin histology indicated no significant differences in tissue damage between treatment groups and controls. Results confirm calcium alginate microfibers are capable of binding and subsequently releasing dKn2-7 over a 24-h period when rehydrated. Furthermore, dKn2-7 released from the fibers was able to significantly reduce biofilms in an <em>ex vivo</em> model with minimal toxicity, indicating these dKn2-7-loaded fiber dressings may be effective at controlling <em>C. albicans</em> biofilm infections <em>in vivo</em>.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"205 ","pages":"Article 114578"},"PeriodicalIF":4.4,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges in the development of long acting injectable multivesicular liposomes (DepoFoam® technology) 开发长效可注射多囊脂质体(DepoFoam® 技术)的挑战。
IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-09 DOI: 10.1016/j.ejpb.2024.114577
Ji Li , Ziyun Xia , Minzhi Yu , Anna Schwendeman
Multivesicular liposomes (DepoFoam® technology) are distinctive lipid-based sustained release drug delivery systems. Their non-concentric structure differentiates them from unilamellar and multilamellar liposomes. Several products using DepoFoam® technology have been successfully developed and translated into clinical and commercial applications. The unique composition and structure of these particles result in large drug-trap volumes, diverse loading capacities, variable release rates, and different administration routes. With all these advantages, DepoFoam® based products can achieve sustained release pharmacokinetics and significantly improved half-life in various subject species. However, the complexity of constituents and the manufacturing process, as well as the complicated structure and release mechanism, pose challenges to the translation and application of DepoFoam® technology. This review aims to summarize current approved commercial products based on DepoFoam® technology, their structures and components, large-scale manufacturing processes, release characteristics, in vivo pharmacokinetics and clinical outcomes. Challenges in the development and approval of multivesicular liposomes are also highlighted. The persistent academic and industrial research will be needed to overcome the difficulties in developing this unique drug delivery system and pave the path for successful DepoFoam® applications in the future.
多囊脂质体(DepoFoam® 技术)是一种独特的脂基缓释给药系统。它们的非同心结构使其有别于单胶束和多胶束脂质体。采用 DepoFoam® 技术的几种产品已成功开发并投入临床和商业应用。这些微粒的独特组成和结构使其具有较大的药物捕获量、不同的负载能力、可变的释放速率和不同的给药途径。凭借所有这些优势,基于 DepoFoam® 的产品可以实现持续释放药代动力学,并显著改善各种受试物种的半衰期。然而,复杂的成分和生产工艺,以及复杂的结构和释放机理,都给 DepoFoam® 技术的转化和应用带来了挑战。本综述旨在总结目前已批准的基于 DepoFoam® 技术的商业产品、其结构和成分、大规模制造工艺、释放特性、体内药代动力学和临床结果。此外,还重点介绍了多囊脂质体在开发和审批方面面临的挑战。要克服开发这种独特给药系统的困难,并为 DepoFoam® 在未来的成功应用铺平道路,需要坚持不懈的学术和工业研究。
{"title":"Challenges in the development of long acting injectable multivesicular liposomes (DepoFoam® technology)","authors":"Ji Li ,&nbsp;Ziyun Xia ,&nbsp;Minzhi Yu ,&nbsp;Anna Schwendeman","doi":"10.1016/j.ejpb.2024.114577","DOIUrl":"10.1016/j.ejpb.2024.114577","url":null,"abstract":"<div><div>Multivesicular liposomes (DepoFoam® technology) are distinctive lipid-based sustained release drug delivery systems. Their non-concentric structure differentiates them from unilamellar and multilamellar liposomes. Several products using DepoFoam® technology have been successfully developed and translated into clinical and commercial applications. The unique composition and structure of these particles result in large drug-trap volumes, diverse loading capacities, variable release rates, and different administration routes. With all these advantages, DepoFoam® based products can achieve sustained release pharmacokinetics and significantly improved half-life in various subject species. However, the complexity of constituents and the manufacturing process, as well as the complicated structure and release mechanism, pose challenges to the translation and application of DepoFoam® technology. This review aims to summarize current approved commercial products based on DepoFoam® technology, their structures and components, large-scale manufacturing processes, release characteristics, <em>in vivo</em> pharmacokinetics and clinical outcomes. Challenges in the development and approval of multivesicular liposomes are also highlighted. The persistent academic and industrial research will be needed to overcome the difficulties in developing this unique drug delivery system and pave the path for successful DepoFoam® applications in the future.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"205 ","pages":"Article 114577"},"PeriodicalIF":4.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing effects of terpene-based deep eutectic solvent and solid microneedles on skin permeation of drugs with varying lipophilicity 比较萜烯基深共晶溶剂和固体微针对不同亲脂性药物皮肤渗透的影响
IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-09 DOI: 10.1016/j.ejpb.2024.114576
Grzegorz S. Czyrski, Mikkel K. Frese Hjort, Thomas Rades, Andrea Heinz
Transdermal delivery of therapeutic molecules is often hindered by the properties of the skin, with the stratum corneum serving as the primary permeation barrier. To overcome this barrier, the integrity of the stratum corneum can be modified by chemical permeation enhancers, such as deep eutectic solvents (DESs), or by mechanically impairing the skin with microneedles (MNs). However, a systematic comparison between these strategies is currently lacking. Hence, this study examined the potential of DESs and MNs to promote the permeation and retention of drugs with varying lipophilicities – specifically, the hydrophilic drug metronidazole (logP ∼ 0), the moderately lipophilic drug lidocaine (logP ∼ 2.3), and the highly lipophilic drug clotrimazole (logP ∼ 5). A mixture of menthol and thymol was selected as a model terpene-based DES and delivery vehicle, while a DermaPen equipped with solid MNs was used to mechanically impair the skin. Permeation rates of model drugs applied to the skin with either DES, MNs, or both were compared to the rates determined for the drugs applied in control vehicles. Both strategies were found to compromise the skin barrier function, but their permeation-enhancing effect was dependent on the lipophilicity of tested model drug. The DES was most effective for the hydrophilic drug metronidazole, while the MNs were more effective in increasing the permeation of the highly lipophilic drug clotrimazole. For the moderately lipophilic drug lidocaine, neither the DES nor MNs increased its permeation rate, as the drug permeated through the skin well on its own. Notably, the combination of both enhancement strategies did not result in significantly better permeation rates of the drugs compared to the individual approaches. In conclusion, both the terpene-based DES and solid MNs are effective strategies to enhance drug permeation through the skin, but our results suggest that the choice of strategy should be dictated by the drug’s lipophilicity. Moreover, from a permeation-enhancing perspective, there is no benefit in combining these two strategies.
治疗分子的透皮给药通常受到皮肤特性的阻碍,而角质层是主要的渗透屏障。为了克服这一障碍,可以通过化学渗透促进剂(如深共晶溶剂(DES))或微针(MN)机械损伤皮肤来改变角质层的完整性。然而,目前还缺乏对这些策略的系统比较。因此,本研究考察了 DESs 和 MNs 促进不同亲脂性药物渗透和保留的潜力,特别是亲水性药物甲硝唑(logP ∼ 0)、中等亲脂性药物利多卡因(logP ∼ 2.3)和高亲脂性药物克霉唑(logP ∼ 5)。薄荷醇和百里酚的混合物被选为基于萜烯的 DES 和输送载体模型,而装有固体 MNs 的 DermaPen 则用于机械损伤皮肤。将使用 DES、MNs 或两者的皮肤模型药物渗透率与使用对照载体的药物渗透率进行了比较。结果发现,这两种方法都会损害皮肤屏障功能,但它们的渗透增强效果取决于被测模型药物的亲脂性。DES 对亲水性药物甲硝唑最有效,而 MN 对增加高亲脂性药物克霉唑的渗透更有效。对于中等亲脂性药物利多卡因,DES 和微针都不能提高其渗透率,因为这种药物本身就能很好地透过皮肤。值得注意的是,与单独使用两种方法相比,两种增强策略的结合并没有明显提高药物的渗透率。总之,基于萜烯的 DES 和固体 MNs 都是增强药物在皮肤中渗透的有效策略,但我们的研究结果表明,策略的选择应取决于药物的亲脂性。此外,从促进渗透的角度来看,将这两种策略结合使用并无益处。
{"title":"Comparing effects of terpene-based deep eutectic solvent and solid microneedles on skin permeation of drugs with varying lipophilicity","authors":"Grzegorz S. Czyrski,&nbsp;Mikkel K. Frese Hjort,&nbsp;Thomas Rades,&nbsp;Andrea Heinz","doi":"10.1016/j.ejpb.2024.114576","DOIUrl":"10.1016/j.ejpb.2024.114576","url":null,"abstract":"<div><div>Transdermal delivery of therapeutic molecules is often hindered by the properties of the skin, with the stratum corneum serving as the primary permeation barrier. To overcome this barrier, the integrity of the stratum corneum can be modified by chemical permeation enhancers, such as deep eutectic solvents (DESs), or by mechanically impairing the skin with microneedles (MNs). However, a systematic comparison between these strategies is currently lacking. Hence, this study examined the potential of DESs and MNs to promote the permeation and retention of drugs with varying lipophilicities – specifically, the hydrophilic drug metronidazole (logP ∼ 0), the moderately lipophilic drug lidocaine (logP ∼ 2.3), and the highly lipophilic drug clotrimazole (logP ∼ 5). A mixture of menthol and thymol was selected as a model terpene-based DES and delivery vehicle, while a DermaPen equipped with solid MNs was used to mechanically impair the skin. Permeation rates of model drugs applied to the skin with either DES, MNs, or both were compared to the rates determined for the drugs applied in control vehicles. Both strategies were found to compromise the skin barrier function, but their permeation-enhancing effect was dependent on the lipophilicity of tested model drug. The DES was most effective for the hydrophilic drug metronidazole, while the MNs were more effective in increasing the permeation of the highly lipophilic drug clotrimazole. For the moderately lipophilic drug lidocaine, neither the DES nor MNs increased its permeation rate, as the drug permeated through the skin well on its own. Notably, the combination of both enhancement strategies did not result in significantly better permeation rates of the drugs compared to the individual approaches. In conclusion, both the terpene-based DES and solid MNs are effective strategies to enhance drug permeation through the skin, but our results suggest that the choice of strategy should be dictated by the drug’s lipophilicity. Moreover, from a permeation-enhancing perspective, there is no benefit in combining these two strategies.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"205 ","pages":"Article 114576"},"PeriodicalIF":4.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the potential of pulmonary surfactant-based nanocarriers for protein inhalation therapy 揭示基于肺表面活性物质的纳米载体在蛋白质吸入疗法中的潜力。
IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-07 DOI: 10.1016/j.ejpb.2024.114574
Kiramat Ali Shah , Anam Razzaq , Bengang You , Amos Dormocara , Haroon Iqbal , Jing-Hao Cui
The study investigates the effect of pulmonary surfactant (PS) coating on the performance of lysozyme-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs). The NPs were fabricated using a double emulsification technique and optimized using the Box-Behnken experimental design (BBED). The NPs were assessed for size, polydispersity index (PDI), zeta potential, drug loading (DL%), and encapsulation efficiency (EE%). In addition, the optimized PLGA NPs were modified with either a neutral dipalmitoylphosphatidylcholine DPPC or an anionic dipalmitoyl phosphatidylglycerol (DPPG) with different molar ratios of PS to PLGA (PS: PLGA = 1:2, 1:1 and 2:1). These NPs were assessed for biological activity, drug release, mucus adhesion, mucus penetration, cellular uptake, toxicity, and in vivo destiny after intratracheal (IT) instillation to mice. Results showed a bi-phasic drug release, with no significant effect of PS on the release and biological activities of PLGA NPs. The PS@PLGA NPs improved mucus adhesion, decreased mucus penetration, and increased cellular internalization of PLGA NPs. In addition, ex vivo experiments demonstrated that DPPC@PLGA NPs and DPPG@PLGA NPs could adhere to mucus. These NPs created a thicker layer at the interface of the airway compared to unmodified PLGA NPs. Moreover, interaction of PS@PLGA NPs with BALF suggested improved mucoadhesive characteristics. Finally, the in vivo studies confirmed the precise distribution of all NPs in the lungs after IT administration. The study presents empirical evidence and scientific guidance for developing a lung surfactant-modified nanocarrier system for lung drug delivery.
本研究探讨了肺表面活性物质(PS)涂层对溶菌酶负载的聚(乳酸-共聚乙醇)酸(PLGA)纳米粒子(NPs)性能的影响。NPs 采用双乳化技术制备,并通过盒式-贝肯实验设计(BBED)进行了优化。对 NPs 的尺寸、多分散指数(PDI)、ZETA 电位、载药量(DL%)和封装效率(EE%)进行了评估。此外,还用中性二棕榈酰基磷脂酰胆碱 DPPC 或阴离子二棕榈酰基磷脂酰甘油 (DPPG) 对优化的 PLGA NPs 进行了修饰,PS 与 PLGA 的摩尔比各不相同(PS: PLGA = 1:2、1:1 和 2:1)。对这些 NPs 进行了生物活性、药物释放、粘液粘附、粘液渗透、细胞摄取、毒性和小鼠气管内(IT)灌注后的体内去向评估。结果表明,PS 对 PLGA NPs 的释放和生物活性无明显影响,药物释放呈双相进行。PS@PLGA NPs 改善了粘液粘附性,降低了粘液穿透性,增加了 PLGA NPs 的细胞内化。此外,体内外实验表明,DPPC@PLGA NPs 和 DPPG@PLGA NPs 可以粘附在粘液上。与未改性的 PLGA NPs 相比,这些 NPs 在气道界面上形成了更厚的一层。此外,PS@PLGA NPs 与 BALF 的相互作用表明它们具有更好的粘液粘附特性。最后,体内研究证实了所有 NPs 在 IT 给药后在肺部的精确分布。该研究为开发用于肺部给药的肺表面活性剂修饰纳米载体系统提供了经验证据和科学指导。
{"title":"Unveiling the potential of pulmonary surfactant-based nanocarriers for protein inhalation therapy","authors":"Kiramat Ali Shah ,&nbsp;Anam Razzaq ,&nbsp;Bengang You ,&nbsp;Amos Dormocara ,&nbsp;Haroon Iqbal ,&nbsp;Jing-Hao Cui","doi":"10.1016/j.ejpb.2024.114574","DOIUrl":"10.1016/j.ejpb.2024.114574","url":null,"abstract":"<div><div>The study investigates the effect of pulmonary surfactant (PS) coating on the performance of lysozyme-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles (NPs). The NPs were fabricated using a double emulsification technique and optimized using the Box-Behnken experimental design (BBED). The NPs were assessed for size, polydispersity index (PDI), zeta potential, drug loading (DL%), and encapsulation efficiency (EE%). In addition, the optimized PLGA NPs were modified with either a neutral dipalmitoylphosphatidylcholine DPPC or an anionic dipalmitoyl phosphatidylglycerol (DPPG) with different molar ratios of PS to PLGA (PS: PLGA = 1:2, 1:1 and 2:1). These NPs were assessed for biological activity, drug release, mucus adhesion, mucus penetration, cellular uptake, toxicity, and in vivo destiny after intratracheal (IT) instillation to mice. Results showed a bi-phasic drug release, with no significant effect of PS on the release and biological activities of PLGA NPs. The PS@PLGA NPs improved mucus adhesion, decreased mucus penetration, and increased cellular internalization of PLGA NPs. In addition, ex vivo experiments demonstrated that DPPC@PLGA NPs and DPPG@PLGA NPs could adhere to mucus. These NPs created a thicker layer at the interface of the airway compared to unmodified PLGA NPs. Moreover, interaction of PS@PLGA NPs with BALF suggested improved mucoadhesive characteristics. Finally, the in vivo studies confirmed the precise distribution of all NPs in the lungs after IT administration. The study presents empirical evidence and scientific guidance for developing a lung surfactant-modified nanocarrier system for lung drug delivery.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"205 ","pages":"Article 114574"},"PeriodicalIF":4.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142617262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "pH-Sensitive Tacrolimus loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease" [Eur. J. Pharm. Biopharm. 204 (2024) 114461]. 对 "用于治疗炎症性肠病的 pH 值敏感的他克莫司负载纳米结构脂质载体"[Eur. J. Pharm. Biopharm. 204 (2024) 114461]的更正。
IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-06 DOI: 10.1016/j.ejpb.2024.114573
Sidra Altaf, Mahira Zeeshan, Hussain Ali, Ahmed Zeb, Iqra Afzal, Ayesha Imran, Danish Mazhar, Salman Khan, Fawad Ali Shah
{"title":"Corrigendum to \"pH-Sensitive Tacrolimus loaded nanostructured lipid carriers for the treatment of inflammatory bowel disease\" [Eur. J. Pharm. Biopharm. 204 (2024) 114461].","authors":"Sidra Altaf, Mahira Zeeshan, Hussain Ali, Ahmed Zeb, Iqra Afzal, Ayesha Imran, Danish Mazhar, Salman Khan, Fawad Ali Shah","doi":"10.1016/j.ejpb.2024.114573","DOIUrl":"https://doi.org/10.1016/j.ejpb.2024.114573","url":null,"abstract":"","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":" ","pages":"114573"},"PeriodicalIF":4.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalisation of chitosan with methacryloyl and crotonoyl groups as a strategy to enhance its mucoadhesive properties 用甲基丙烯酰基和巴豆酰基对壳聚糖进行官能化处理,以增强其粘附性。
IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-06 DOI: 10.1016/j.ejpb.2024.114575
Shiva Vanukuru , Fraser Steele , Natalia N. Porfiryeva , Alejandro Sosnik , Vitaliy V. Khutoryanskiy
Mucoadhesive polymers are crucial for prolonging drug retention on mucosal surfaces. This study focuses on synthesising and characterising novel derivatives by reacting chitosan with crotonic and methacrylic anhydrides. The structure of the resulting derivatives was confirmed using proton-nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy. It was established that the degree of substitution plays a crucial role in the pH-dependent solubility profiles and electrophoretic mobility of the chitosan derivatives. Spray-drying chitosan solutions enabled preparation of microparticles, whose mucoadhesive properties were evaluated using fluorescence flow-through studies and tensile test, demonstrating improved retention on sheep nasal mucosa for modified derivatives. Acute toxicity studies conducted in vivo using planaria and in vitro using MTT assay with the Caco-2 cell line, a model of the mucosal epithelium in vitro, showed that the novel derivatives are not cytotoxic. These findings emphasise the potential of tailored chitosan chemical modifications for enhancing transmucosal drug delivery.
粘液黏性聚合物对于延长药物在粘膜表面的滞留时间至关重要。本研究的重点是通过壳聚糖与巴豆酸酐和甲基丙烯酸酐的反应合成新型衍生物并确定其特性。利用质子-核磁共振波谱和傅立叶变换红外光谱确认了所得衍生物的结构。结果表明,取代度对壳聚糖衍生物随 pH 值变化的溶解度曲线和电泳迁移率起着至关重要的作用。通过对壳聚糖溶液进行喷雾干燥,制备出了微颗粒,并利用荧光流动研究和拉伸试验对其粘附性进行了评估,结果表明改性衍生物在绵羊鼻粘膜上的粘附性有所改善。利用疟原虫进行的体内急性毒性研究和利用体外粘膜上皮细胞模型 Caco-2 细胞系进行的 MTT 试验表明,新型衍生物没有细胞毒性。这些发现强调了壳聚糖定制化学修饰在加强经粘膜给药方面的潜力。
{"title":"Functionalisation of chitosan with methacryloyl and crotonoyl groups as a strategy to enhance its mucoadhesive properties","authors":"Shiva Vanukuru ,&nbsp;Fraser Steele ,&nbsp;Natalia N. Porfiryeva ,&nbsp;Alejandro Sosnik ,&nbsp;Vitaliy V. Khutoryanskiy","doi":"10.1016/j.ejpb.2024.114575","DOIUrl":"10.1016/j.ejpb.2024.114575","url":null,"abstract":"<div><div>Mucoadhesive polymers are crucial for prolonging drug retention on mucosal surfaces. This study focuses on synthesising and characterising novel derivatives by reacting chitosan with crotonic and methacrylic anhydrides. The structure of the resulting derivatives was confirmed using proton-nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy. It was established that the degree of substitution plays a crucial role in the pH-dependent solubility profiles and electrophoretic mobility of the chitosan derivatives. Spray-drying chitosan solutions enabled preparation of microparticles, whose mucoadhesive properties were evaluated using fluorescence flow-through studies and tensile test, demonstrating improved retention on sheep nasal mucosa for modified derivatives. Acute toxicity studies conducted <em>in vivo</em> using planaria and <em>in vitro</em> using MTT assay with the Caco-2 cell line, a model of the mucosal epithelium <em>in vitro</em>, showed that the novel derivatives are not cytotoxic. These findings emphasise the potential of tailored chitosan chemical modifications for enhancing transmucosal drug delivery.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"205 ","pages":"Article 114575"},"PeriodicalIF":4.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transitioning from Pickering emulsions to Pickering emulsion hydrogels: A potential advancement in cosmeceuticals 从皮克林乳液过渡到皮克林乳液水凝胶:药用化妆品的潜在进步。
IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-30 DOI: 10.1016/j.ejpb.2024.114572
Akashni Rajoo , Sangeetaprivya P. Siva , Chin Siew Sia , Eng-Seng Chan , Beng Ti Tey , Liang Ee Low
Cosmeceuticals, focusing on enhancing skin health and appearance, heavily rely on emulsions as one of the common mediums. These emulsions pose a challenge due to their dependence on surfactants which are essential for stability but are causing concerns about environmental impact as well as evolving consumer preferences. This has led to research focused on Pickering emulsions (PEs), which are colloidal particle-based emulsion alternatives. Compared to conventional emulsions, PEs offer enhanced stability and functionality in addition to serving as a sustainable alternative but still pose challenges such as rheological control and requiring further improvement in long-term stability, whereby the limitations could be addressed through the introduction of a hydrogel network. In this review, we first highlight the strategies and considerations to optimize active ingredient (AI) absorption and penetration in a PE-based formulation. We then delve into a comprehensive overview of the potential of Pickering-based cosmeceutical emulsions including their attractive features, the various Pickering particles that can be employed, past studies and their limitations. Further, PE hydrogels (PEHs), which combines the features between PE and hydrogel as an innovative solution to address challenges posed by both conventional emulsions and PEs in the cosmeceutical industry is explored. Moreover, concerns related to toxicity and biocompatibility are critically examined, alongside considerations of scalability and commercial viability, providing a forward-looking perspective on potential future research directions centered on the application of PEHs in the cosmeceutical field.
注重增强皮肤健康和外观的药妆产品在很大程度上依赖乳液作为常用介质之一。这些乳液对表面活性剂的依赖是一个挑战,表面活性剂对稳定性至关重要,但却引起了人们对环境影响和消费者偏好不断变化的担忧。因此,研究重点转向皮克林乳液(PE),这是一种基于胶体颗粒的乳液替代品。与传统乳液相比,皮克林乳液除了作为一种可持续的替代品外,还具有更高的稳定性和功能性,但仍面临流变控制等挑战,需要进一步提高长期稳定性,而这些限制可通过引入水凝胶网络来解决。在本综述中,我们首先强调了在聚乙烯制剂中优化活性成分(AI)吸收和渗透的策略和注意事项。然后,我们全面概述了基于皮克林的药用化妆品乳剂的潜力,包括其诱人的特点、可采用的各种皮克林颗粒、以往的研究及其局限性。此外,还探讨了聚乙烯水凝胶(PEHs),它结合了聚乙烯和水凝胶的特点,是解决传统乳剂和聚乙烯在药用化妆品行业所面临挑战的创新解决方案。此外,还批判性地研究了与毒性和生物相容性有关的问题,以及可扩展性和商业可行性方面的考虑因素,为以聚乙烯水凝胶在药妆领域的应用为中心的潜在未来研究方向提供了前瞻性视角。
{"title":"Transitioning from Pickering emulsions to Pickering emulsion hydrogels: A potential advancement in cosmeceuticals","authors":"Akashni Rajoo ,&nbsp;Sangeetaprivya P. Siva ,&nbsp;Chin Siew Sia ,&nbsp;Eng-Seng Chan ,&nbsp;Beng Ti Tey ,&nbsp;Liang Ee Low","doi":"10.1016/j.ejpb.2024.114572","DOIUrl":"10.1016/j.ejpb.2024.114572","url":null,"abstract":"<div><div>Cosmeceuticals, focusing on enhancing skin health and appearance, heavily rely on emulsions as one of the common mediums. These emulsions pose a challenge due to their dependence on surfactants which are essential for stability but are causing concerns about environmental impact as well as evolving consumer preferences. This has led to research focused on Pickering emulsions (PEs), which are colloidal particle-based emulsion alternatives. Compared to conventional emulsions, PEs offer enhanced stability and functionality in addition to serving as a sustainable alternative but still pose challenges such as rheological control and requiring further improvement in long-term stability, whereby the limitations could be addressed through the introduction of a hydrogel network. In this review, we first highlight the strategies and considerations to optimize active ingredient (AI) absorption and penetration in a PE-based formulation. We then delve into a comprehensive overview of the potential of Pickering-based cosmeceutical emulsions including their attractive features, the various Pickering particles that can be employed, past studies and their limitations. Further, PE hydrogels (PEHs), which combines the features between PE and hydrogel as an innovative solution to address challenges posed by both conventional emulsions and PEs in the cosmeceutical industry is explored. Moreover, concerns related to toxicity and biocompatibility are critically examined, alongside considerations of scalability and commercial viability, providing a forward-looking perspective on potential future research directions centered on the application of PEHs in the cosmeceutical field.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"205 ","pages":"Article 114572"},"PeriodicalIF":4.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational and experimental analysis of Luteolin-β-cyclodextrin supramolecular complexes: Insights into conformational dynamics and phase solubility 木犀草素-β-环糊精超分子复合物的计算和实验分析:对构象动力学和相溶解性的见解。
IF 4.4 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-29 DOI: 10.1016/j.ejpb.2024.114569
Pramod Kumar , Vijay Kumar Bhardwaj , Pravin Shende , Rituraj Purohit
Investigating the structural stability of poorly-soluble luteolin (LuT) after encapsulation within cyclodextrins (CDs) is crucial for unlocking the therapeutic potential of LuT bioactive molecule. Herein, native and modified β-CD were employed to investigate LuT inclusion complex formation. Molecular mechanics (MM) and quantum mechanics (QM) were utilized for structural dynamics analysis. Microsecond timescale MD simulations yielded insights into LuT-CD interactions. The binding affinity between LuT and selected β-CDs was assessed by calculating the binding free energy using MM-PBSA and umbrella sampling simulations. The MM-PBSA results indicated that Heptakis-O-(2-hydroxypropyl)-β-CD (HP-β-CD) (−82.59+/-11.67 kJ/mol) and Di-O-methyl-β-CD (DM-β-CD) (−54.01+/-11.07 kJ/mol) exhibited good binding affinity for LuT. Subsequently, derivative screening of HP-β-CD revealed that only 2-HP-β-CD (HP-β-CD-1)/LuT (−21.38 kJ/mol) displayed a superior binding free energy (obtained from umbrella sampling) than HP-β-CD/LuT (−16.55 kJ/mol) inclusion complex. We conducted QM calculations on the top three inclusion complexes namelly HP-β-CD, DM-β-CD, and HP-β-CD-1 employing wB97X-D/6–311 + G(d,p) model chemistry to strengthen the MM results. The computational analysis aligns with experimental findings (phase solubility analysis), validating HP-β-CD-1 as most effective cavitand molecule for improving the solubility of LuT. This study offers critical structural insights for developing novel HP-β-CD derivatives with enhanced host capacity to encapsulate guest molecules efficiently.
研究溶解性差的木犀草素(LuT)被环糊精(CD)包裹后的结构稳定性,对于挖掘 LuT 生物活性分子的治疗潜力至关重要。本文采用原生和改性β-CD来研究LuT包合物的形成。分子力学(MM)和量子力学(QM)被用于结构动力学分析。微秒级的 MD 模拟揭示了 LuT 与 CD 之间的相互作用。通过使用 MM-PBSA 和伞状采样模拟计算结合自由能,评估了 LuT 与所选 β-CD 之间的结合亲和力。MM-PBSA 结果表明,Heptakis-O-(2-羟基丙基)-β-CD(HP-β-CD)(-82.59+/-11.67 kJ/mol)和 Di-O-methyl-β-CD (DM-β-CD)(-54.01+/-11.07 kJ/mol)与 LuT 具有良好的结合亲和力。随后,对 HP-β-CD 进行衍生筛选后发现,只有 2-HP-β-CD (HP-β-CD-1)/LuT (-21.38 kJ/mol) 的结合自由能(通过伞状取样获得)高于 HP-β-CD/LuT (-19.15 kJ/mol) 包合物。我们采用 wB97X-D/6-311 + G(d,p) 化学模型对排名前三的复合物命名为 HP-β-CD、DM-β-CD 和 HP-β-CD-1 进行了 QM 计算,以加强 MM 结果。计算分析结果与实验结果(相溶解度分析)一致,验证了 HP-β-CD-1 是提高 LuT 溶解度最有效的空穴剂分子。这项研究为开发新型 HP-β-CD 衍生物提供了重要的结构见解,这些衍生物具有更强的宿主能力,能有效地包裹客体分子。
{"title":"Computational and experimental analysis of Luteolin-β-cyclodextrin supramolecular complexes: Insights into conformational dynamics and phase solubility","authors":"Pramod Kumar ,&nbsp;Vijay Kumar Bhardwaj ,&nbsp;Pravin Shende ,&nbsp;Rituraj Purohit","doi":"10.1016/j.ejpb.2024.114569","DOIUrl":"10.1016/j.ejpb.2024.114569","url":null,"abstract":"<div><div>Investigating the structural stability of poorly-soluble luteolin (LuT) after encapsulation within cyclodextrins (CDs) is crucial for unlocking the therapeutic potential of LuT bioactive molecule. Herein, native and modified β-CD were employed to investigate LuT inclusion complex formation. Molecular mechanics (MM) and quantum mechanics (QM) were utilized for structural dynamics analysis. Microsecond timescale MD simulations yielded insights into LuT-CD interactions. The binding affinity between LuT and selected β-CDs was assessed by calculating the binding free energy using MM-PBSA and umbrella sampling simulations. The MM-PBSA results indicated that Heptakis-O-(2-hydroxypropyl)-β-CD (HP-β-CD) (−82.59+/-11.67 kJ/mol) and Di-O-methyl-β-CD (DM-β-CD) (−54.01+/-11.07 kJ/mol) exhibited good binding affinity for LuT. Subsequently, derivative screening of HP-β-CD revealed that only 2-HP-β-CD (HP-β-CD-1)/LuT (−21.38 kJ/mol) displayed a superior binding free energy (obtained from umbrella sampling) than HP-β-CD/LuT (−16.55 kJ/mol) inclusion complex. We conducted QM calculations on the top three inclusion complexes namelly HP-β-CD, DM-β-CD, and HP-β-CD-1 employing wB97X-D/6–311 + G(d,p) model chemistry to strengthen the MM results. The computational analysis aligns with experimental findings (phase solubility analysis), validating HP-β-CD-1 as most effective cavitand molecule for improving the solubility of LuT. This study offers critical structural insights for developing novel HP-β-CD derivatives with enhanced host capacity to encapsulate guest molecules efficiently.</div></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"205 ","pages":"Article 114569"},"PeriodicalIF":4.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Journal of Pharmaceutics and Biopharmaceutics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1