Thayssa Gomes Farias, Márcia Soares Dos Santos, Andre Luiz Mencalha, Adenilson de Souza da Fonseca
{"title":"Low-power red laser and blue LED modulate telomere maintenance and length in human breast cancer cells.","authors":"Thayssa Gomes Farias, Márcia Soares Dos Santos, Andre Luiz Mencalha, Adenilson de Souza da Fonseca","doi":"10.1007/s10103-024-04194-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cells have the ability to undergo an unlimited number of cell divisions, which gives them immortality. Thus, the cancer cell can extend the length of its telomeres, allowing these cells to divide unlimitedly and avoid entering the state of senescence or cellular apoptosis. One of the main effects of photobiomodulation (PBM) is the increase in the production of adenosine triphosphate (ATP) and free radicals, mainly reactive oxygen species (ROS). Existent data indicates that high levels of ROS can cause shortening and dysfunctional telomeres. Therefore, a better understanding of the effects induced by PBM on cancer cell telomere maintenance is needed. This work aimed to evaluate the effects of low-power red laser (658 nm) and blue LED (470 nm) on the TRF1 and TRF2 mRNA levels and telomere length in human breast cancer cells. MCF-7 and MDA-MB-231 cells were irradiated with a low-power red laser (69 J cm<sup>-2</sup>, 0.77 W/cm<sup>-2</sup>) and blue LED (482 J cm<sup>-2</sup>, 5.35 W/cm<sup>-2</sup>), alone or in combination, and the relative mRNA levels of the genes and telomere length were assessed by quantitative reverse transcription polymerase chain reaction. The results suggested that exposure to certain red laser and blue LED fluences decreased the TRF1 and TRF2 mRNA levels in both human breast cancer cells. Telomere length was increased in MCF-7 cells after exposure to red laser and blue LED. However, telomere length in MDA-MB-231 was shortened after exposure to red laser and blue LED at fluences evaluated. Our research suggests that photobiomodulation induced by red laser and low-power blue LED could alter telomere maintenance and length.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":"39 1","pages":"248"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-024-04194-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer cells have the ability to undergo an unlimited number of cell divisions, which gives them immortality. Thus, the cancer cell can extend the length of its telomeres, allowing these cells to divide unlimitedly and avoid entering the state of senescence or cellular apoptosis. One of the main effects of photobiomodulation (PBM) is the increase in the production of adenosine triphosphate (ATP) and free radicals, mainly reactive oxygen species (ROS). Existent data indicates that high levels of ROS can cause shortening and dysfunctional telomeres. Therefore, a better understanding of the effects induced by PBM on cancer cell telomere maintenance is needed. This work aimed to evaluate the effects of low-power red laser (658 nm) and blue LED (470 nm) on the TRF1 and TRF2 mRNA levels and telomere length in human breast cancer cells. MCF-7 and MDA-MB-231 cells were irradiated with a low-power red laser (69 J cm-2, 0.77 W/cm-2) and blue LED (482 J cm-2, 5.35 W/cm-2), alone or in combination, and the relative mRNA levels of the genes and telomere length were assessed by quantitative reverse transcription polymerase chain reaction. The results suggested that exposure to certain red laser and blue LED fluences decreased the TRF1 and TRF2 mRNA levels in both human breast cancer cells. Telomere length was increased in MCF-7 cells after exposure to red laser and blue LED. However, telomere length in MDA-MB-231 was shortened after exposure to red laser and blue LED at fluences evaluated. Our research suggests that photobiomodulation induced by red laser and low-power blue LED could alter telomere maintenance and length.
期刊介绍:
Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics.
The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.