Nikita S Dutta, Gerard Michael Carroll, Nathan R Neale, Sang-Don Han, Mowafak Al-Jassim, Katherine Jungjohann
{"title":"Operando Freezing Cryogenic Electron Microscopy of Active Battery Materials.","authors":"Nikita S Dutta, Gerard Michael Carroll, Nathan R Neale, Sang-Don Han, Mowafak Al-Jassim, Katherine Jungjohann","doi":"10.1093/mam/ozae097","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding structural and chemical evolution of battery materials during operation is critical to achieving safe, efficient, and long-lasting energy storage. Cryogenic electron microscopy (cryo-EM) has become a valuable tool in battery characterization, leveraging low temperatures to improve stability of sensitive materials under electron beam irradiation. However, typical cryo-EM sample preparations leave extended time between the electrochemical point of interest and ex situ freezing of samples, during which active structures may relax, degrade, or otherwise evolve. Here, we detail a method for operando freezing cryo-EM to preserve and characterize native electrode and interfacial structures that arise during battery cycling, based on an operando plunge freezer and cold sample removal process. We validate the method on multiple electrode materials and quantify and discuss the freezing rate achieved. Operando freezing cryo-EM can be used to directly visualize transient features that arise at active electrochemical interfaces, to enable deeper understanding of structural evolution and interfacial chemistry in batteries and other electrochemical systems.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":"844-852"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae097","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding structural and chemical evolution of battery materials during operation is critical to achieving safe, efficient, and long-lasting energy storage. Cryogenic electron microscopy (cryo-EM) has become a valuable tool in battery characterization, leveraging low temperatures to improve stability of sensitive materials under electron beam irradiation. However, typical cryo-EM sample preparations leave extended time between the electrochemical point of interest and ex situ freezing of samples, during which active structures may relax, degrade, or otherwise evolve. Here, we detail a method for operando freezing cryo-EM to preserve and characterize native electrode and interfacial structures that arise during battery cycling, based on an operando plunge freezer and cold sample removal process. We validate the method on multiple electrode materials and quantify and discuss the freezing rate achieved. Operando freezing cryo-EM can be used to directly visualize transient features that arise at active electrochemical interfaces, to enable deeper understanding of structural evolution and interfacial chemistry in batteries and other electrochemical systems.
期刊介绍:
Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.