Bess Glickman , Krista L. Wahlstrom , Jason J. Radley , Ryan T. LaLumiere
{"title":"Basolateral amygdala inputs to the nucleus accumbens shell modulate the consolidation of cued-response and inhibitory avoidance learning","authors":"Bess Glickman , Krista L. Wahlstrom , Jason J. Radley , Ryan T. LaLumiere","doi":"10.1016/j.nlm.2024.107988","DOIUrl":null,"url":null,"abstract":"<div><div>The basolateral amygdala (BLA) modulates different types of memory consolidation via distinct projections to downstream brain regions in multiple memory systems. Prior studies indicate that the BLA projects to the nucleus accumbens shell (NAshell) and that these regions interact to influence some types of behavior. Moreover, previous pharmacological work suggests the BLA and NAshell interact to influence memory. However, the precise role of the BLA-NAshell pathway has never been directly investigated in the consolidation of different types of memory including cued-response, spatial, or inhibitory avoidance (IA) learning. To address this, male and female Sprague-Dawley rats received optogenetic manipulations of the BLA or BLA-NAshell pathway immediately following training in different learning tasks. An initial experiment found that optogenetically inhibiting the BLA itself immediately after training impaired cued-response retention in a Barnes maze task in males and females, confirming earlier pharmacological work in males alone. Subsequent experiments found that BLA-NAshell pathway inhibition impaired retention of cued-response and IA learning but had no effect on retention of spatial learning. However, the present work did not observe any effects of pathway stimulation immediately after cued-response or IA learning. Together, the present findings suggest the BLA modulates the consolidation of cued-response and IA, but not spatial, memory consolidation via NAshell projections.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1074742724000996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The basolateral amygdala (BLA) modulates different types of memory consolidation via distinct projections to downstream brain regions in multiple memory systems. Prior studies indicate that the BLA projects to the nucleus accumbens shell (NAshell) and that these regions interact to influence some types of behavior. Moreover, previous pharmacological work suggests the BLA and NAshell interact to influence memory. However, the precise role of the BLA-NAshell pathway has never been directly investigated in the consolidation of different types of memory including cued-response, spatial, or inhibitory avoidance (IA) learning. To address this, male and female Sprague-Dawley rats received optogenetic manipulations of the BLA or BLA-NAshell pathway immediately following training in different learning tasks. An initial experiment found that optogenetically inhibiting the BLA itself immediately after training impaired cued-response retention in a Barnes maze task in males and females, confirming earlier pharmacological work in males alone. Subsequent experiments found that BLA-NAshell pathway inhibition impaired retention of cued-response and IA learning but had no effect on retention of spatial learning. However, the present work did not observe any effects of pathway stimulation immediately after cued-response or IA learning. Together, the present findings suggest the BLA modulates the consolidation of cued-response and IA, but not spatial, memory consolidation via NAshell projections.