{"title":"Evaluating dynamic models for rigid-foldable origami: unveiling intricate bistable dynamics of stacked-Miura-origami structures as a case study.","authors":"Hongbin Fang, Haiping Wu, Zuolin Liu, Qiwei Zhang, Jian Xu","doi":"10.1098/rsta.2024.0014","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in origami science and engineering have particularly focused on the challenges of dynamics. While research has primarily focused on statics and kinematics, the need for effective and processable dynamic models has become apparent. This paper evaluates various dynamic modelling techniques for rigid-foldable origami, particularly focusing on their ability to capture nonlinear dynamic behaviours. Two primary methods, the lumped mass-spring-damper approach and the energy-based method, are examined using a bistable stacked Miura-origami (SMO) structure as a case study. Through systematic dynamic experiments, we analyse the effectiveness of these models in predicting bistable dynamic responses, including intra- and interwell oscillations, in different loading conditions. Our findings reveal that the energy-based approach, which considers the structure's inertia and utilizes dynamic experimental data for parameter identification, outperforms other models in terms of validity and accuracy. This model effectively predicts the dynamic response types, the rich and complex nonlinear characteristics and the critical frequency where interwell oscillations occur. Despite its relatively increased complexity in model derivation, it maintains computational efficiency and shows promise for broader applications in origami dynamics. By comparing model predictions with experimental results, this study enhances our understanding of origami dynamics and contributes valuable insights for future research and applications. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240014"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0014","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in origami science and engineering have particularly focused on the challenges of dynamics. While research has primarily focused on statics and kinematics, the need for effective and processable dynamic models has become apparent. This paper evaluates various dynamic modelling techniques for rigid-foldable origami, particularly focusing on their ability to capture nonlinear dynamic behaviours. Two primary methods, the lumped mass-spring-damper approach and the energy-based method, are examined using a bistable stacked Miura-origami (SMO) structure as a case study. Through systematic dynamic experiments, we analyse the effectiveness of these models in predicting bistable dynamic responses, including intra- and interwell oscillations, in different loading conditions. Our findings reveal that the energy-based approach, which considers the structure's inertia and utilizes dynamic experimental data for parameter identification, outperforms other models in terms of validity and accuracy. This model effectively predicts the dynamic response types, the rich and complex nonlinear characteristics and the critical frequency where interwell oscillations occur. Despite its relatively increased complexity in model derivation, it maintains computational efficiency and shows promise for broader applications in origami dynamics. By comparing model predictions with experimental results, this study enhances our understanding of origami dynamics and contributes valuable insights for future research and applications. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.