Luis Carlos Rivera Monroy, Leonhard Rist, Christian Ostalecki, Andreas Bauer, Julio Vera, Katharina Breininger, Andreas Maier
{"title":"Graph neural networks in multi-stained pathological imaging: extended comparative analysis of Radiomic features.","authors":"Luis Carlos Rivera Monroy, Leonhard Rist, Christian Ostalecki, Andreas Bauer, Julio Vera, Katharina Breininger, Andreas Maier","doi":"10.1007/s11548-024-03277-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study investigates the application of Radiomic features within graph neural networks (GNNs) for the classification of multiple-epitope-ligand cartography (MELC) pathology samples. It aims to enhance the diagnosis of often misdiagnosed skin diseases such as eczema, lymphoma, and melanoma. The novel contribution lies in integrating Radiomic features with GNNs and comparing their efficacy against traditional multi-stain profiles.</p><p><strong>Methods: </strong>We utilized GNNs to process multiple pathological slides as cell-level graphs, comparing their performance with XGBoost and Random Forest classifiers. The analysis included two feature types: multi-stain profiles and Radiomic features. Dimensionality reduction techniques such as UMAP and t-SNE were applied to optimize the feature space, and graph connectivity was based on spatial and feature closeness.</p><p><strong>Results: </strong>Integrating Radiomic features into spatially connected graphs significantly improved classification accuracy over traditional models. The application of UMAP further enhanced the performance of GNNs, particularly in classifying diseases with similar pathological features. The GNN model outperformed baseline methods, demonstrating its robustness in handling complex histopathological data.</p><p><strong>Conclusion: </strong>Radiomic features processed through GNNs show significant promise for multi-disease classification, improving diagnostic accuracy. This study's findings suggest that integrating advanced imaging analysis with graph-based modeling can lead to better diagnostic tools. Future research should expand these methods to a wider range of diseases to validate their generalizability and effectiveness.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03277-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study investigates the application of Radiomic features within graph neural networks (GNNs) for the classification of multiple-epitope-ligand cartography (MELC) pathology samples. It aims to enhance the diagnosis of often misdiagnosed skin diseases such as eczema, lymphoma, and melanoma. The novel contribution lies in integrating Radiomic features with GNNs and comparing their efficacy against traditional multi-stain profiles.
Methods: We utilized GNNs to process multiple pathological slides as cell-level graphs, comparing their performance with XGBoost and Random Forest classifiers. The analysis included two feature types: multi-stain profiles and Radiomic features. Dimensionality reduction techniques such as UMAP and t-SNE were applied to optimize the feature space, and graph connectivity was based on spatial and feature closeness.
Results: Integrating Radiomic features into spatially connected graphs significantly improved classification accuracy over traditional models. The application of UMAP further enhanced the performance of GNNs, particularly in classifying diseases with similar pathological features. The GNN model outperformed baseline methods, demonstrating its robustness in handling complex histopathological data.
Conclusion: Radiomic features processed through GNNs show significant promise for multi-disease classification, improving diagnostic accuracy. This study's findings suggest that integrating advanced imaging analysis with graph-based modeling can lead to better diagnostic tools. Future research should expand these methods to a wider range of diseases to validate their generalizability and effectiveness.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.