Multi-modal dataset creation for federated learning with DICOM-structured reports.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal of Computer Assisted Radiology and Surgery Pub Date : 2025-02-03 DOI:10.1007/s11548-025-03327-y
Malte Tölle, Lukas Burger, Halvar Kelm, Florian André, Peter Bannas, Gerhard Diller, Norbert Frey, Philipp Garthe, Stefan Groß, Anja Hennemuth, Lars Kaderali, Nina Krüger, Andreas Leha, Simon Martin, Alexander Meyer, Eike Nagel, Stefan Orwat, Clemens Scherer, Moritz Seiffert, Jan Moritz Seliger, Stefan Simm, Tim Friede, Tim Seidler, Sandy Engelhardt
{"title":"Multi-modal dataset creation for federated learning with DICOM-structured reports.","authors":"Malte Tölle, Lukas Burger, Halvar Kelm, Florian André, Peter Bannas, Gerhard Diller, Norbert Frey, Philipp Garthe, Stefan Groß, Anja Hennemuth, Lars Kaderali, Nina Krüger, Andreas Leha, Simon Martin, Alexander Meyer, Eike Nagel, Stefan Orwat, Clemens Scherer, Moritz Seiffert, Jan Moritz Seliger, Stefan Simm, Tim Friede, Tim Seidler, Sandy Engelhardt","doi":"10.1007/s11548-025-03327-y","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose Federated training is often challenging on heterogeneous datasets due to divergent data storage options, inconsistent naming schemes, varied annotation procedures, and disparities in label quality. This is particularly evident in the emerging multi-modal learning paradigms, where dataset harmonization including a uniform data representation and filtering options are of paramount importance.Methods DICOM-structured reports enable the standardized linkage of arbitrary information beyond the imaging domain and can be used within Python deep learning pipelines with highdicom. Building on this, we developed an open platform for data integration with interactive filtering capabilities, thereby simplifying the process of creation of patient cohorts over several sites with consistent multi-modal data.Results In this study, we extend our prior work by showing its applicability to more and divergent data types, as well as streamlining datasets for federated training within an established consortium of eight university hospitals in Germany. We prove its concurrent filtering ability by creating harmonized multi-modal datasets across all locations for predicting the outcome after minimally invasive heart valve replacement. The data include imaging and waveform data (i.e., computed tomography images, electrocardiography scans) as well as annotations (i.e., calcification segmentations, and pointsets), and metadata (i.e., prostheses and pacemaker dependency).Conclusion Structured reports bridge the traditional gap between imaging systems and information systems. Utilizing the inherent DICOM reference system arbitrary data types can be queried concurrently to create meaningful cohorts for multi-centric data analysis. The graphical interface as well as example structured report templates are available at https://github.com/Cardio-AI/fl-multi-modal-dataset-creation .</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03327-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose Federated training is often challenging on heterogeneous datasets due to divergent data storage options, inconsistent naming schemes, varied annotation procedures, and disparities in label quality. This is particularly evident in the emerging multi-modal learning paradigms, where dataset harmonization including a uniform data representation and filtering options are of paramount importance.Methods DICOM-structured reports enable the standardized linkage of arbitrary information beyond the imaging domain and can be used within Python deep learning pipelines with highdicom. Building on this, we developed an open platform for data integration with interactive filtering capabilities, thereby simplifying the process of creation of patient cohorts over several sites with consistent multi-modal data.Results In this study, we extend our prior work by showing its applicability to more and divergent data types, as well as streamlining datasets for federated training within an established consortium of eight university hospitals in Germany. We prove its concurrent filtering ability by creating harmonized multi-modal datasets across all locations for predicting the outcome after minimally invasive heart valve replacement. The data include imaging and waveform data (i.e., computed tomography images, electrocardiography scans) as well as annotations (i.e., calcification segmentations, and pointsets), and metadata (i.e., prostheses and pacemaker dependency).Conclusion Structured reports bridge the traditional gap between imaging systems and information systems. Utilizing the inherent DICOM reference system arbitrary data types can be queried concurrently to create meaningful cohorts for multi-centric data analysis. The graphical interface as well as example structured report templates are available at https://github.com/Cardio-AI/fl-multi-modal-dataset-creation .

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
期刊最新文献
A deep learning-driven method for safe and effective ERCP cannulation. German surgeons' perspective on the application of artificial intelligence in clinical decision-making. Multi-modal dataset creation for federated learning with DICOM-structured reports. DenseSeg: joint learning for semantic segmentation and landmark detection using dense image-to-shape representation. Volume and quality of the gluteal muscles are associated with early physical function after total hip arthroplasty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1